
Practical SAT Solving (ST 2024) Assignment 4

Markus Iser, Dominik Schreiber, Tomáš Balyo

Algorithm Engineering (KIT) 2024-06-18 – 2024-07-09

1 Multiplier Encodings (10 Points)

The task is to output the encoding of a multiplier circuit in CNF. The circuit
should take two unsigned 64-bit integers a and b as input and output their prod-
uct. Variables 1 to 65 of the CNF should be the bits of the first input number a.
Variables 66 to 129 should be the bits of the second input number b. Variables
130 to 193 should be the bits of the output number c. Variables 194 should
indicate whether an overflow happened during addition. The program should
output the CNF in DIMACS format (including a header with the number of
variables and clauses). We will test your program by setting the bits of the in-
put numbers by adding unit clauses and checking whether the output number is
the product of the input numbers. You can find the encoding of the multiplier
circuit in https://satlecture.github.io/kit2024/references/2010%20-%

20Bejar%20-%20Encoding%20Basic%20Arithmetic%20Operations%20for%20SAT-Solvers.

pdf.

2 Perfect Hashing Competition (16 Points)

Algorithm 1 shows the finalization step of the Murmur3 hash function.1 This
function f takes an unsigned 64-bit integer key k and an unsigned 64-bit integer
seed s and returns an unsigned 64-bit integer. Given a bound B = 2x (x ∈ N)
and a set of n ≤ B unsigned 64-bit integers K = {k1, . . . , kn}, write a program
which determines a seed s in such a way that

|{ f(k1, s) mod B, f(k2, s) mod B, . . . , f(kn, s) mod B }| = n,

i.e., all keys are mapped bijectively to a set of n unique integers in the range
[0, B). Encode the function depicted in Algorithm 1 as a Boolean circuit in
CNF and use an incremental SAT solver to solve this problem. Your program
should take the bound B and the set of keys K as input and output the seed s.
You can reuse your encoding of the multiplier circuit from the previous task or
optimize it further as it is done in https://satlecture.github.io/kit2024/

references/2024%20-%20Bierlee%20-%20Single%20Constant%20Multiplication%

20for%20SAT.pdf.

1http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html

https://satlecture.github.io/kit2024/references/2010%20-%20Bejar%20-%20Encoding%20Basic%20Arithmetic%20Operations%20for%20SAT-Solvers.pdf
https://satlecture.github.io/kit2024/references/2010%20-%20Bejar%20-%20Encoding%20Basic%20Arithmetic%20Operations%20for%20SAT-Solvers.pdf
https://satlecture.github.io/kit2024/references/2010%20-%20Bejar%20-%20Encoding%20Basic%20Arithmetic%20Operations%20for%20SAT-Solvers.pdf
https://satlecture.github.io/kit2024/references/2024%20-%20Bierlee%20-%20Single%20Constant%20Multiplication%20for%20SAT.pdf
https://satlecture.github.io/kit2024/references/2024%20-%20Bierlee%20-%20Single%20Constant%20Multiplication%20for%20SAT.pdf
https://satlecture.github.io/kit2024/references/2024%20-%20Bierlee%20-%20Single%20Constant%20Multiplication%20for%20SAT.pdf
http://zimbry.blogspot.com/2011/09/better-bit-mixing-improving-on.html

Algorithm 1: Function f : Murmur3Final

Input: Key k: uint64
Input: Seed s: uint64

k ← k + s
k ← k ⊗ (k >> 33)
k ← k × 0xff51afd7ed558ccd

k ← k ⊗ (k >> 33)
k ← k × 0xc4ceb9fe1a85ec53

k ← k ⊗ (k >> 33)

return k;

2

	Multiplier Encodings (10 Points)
	Perfect Hashing Competition (16 Points)

