
Practical SAT Solving (ST 2024) Assignment 5

Markus Iser, Dominik Schreiber, Tomáš Balyo

Algorithm Engineering (KIT) 2024-07-09 – 2024-07-23

1 Application-specific Analysis (8 Points)

Pick one of the 20 largest benchmark families of SAT Competition 2022 (see
lecture 11 slide 4). Research the following points:

• Where does the family originate from and which people authored it?

• What is the purpose of the benchmark family? (concrete application,
exposing pathological solver behavior, highlighting certain techniques, . . . )

• Are the instances advertised to have any special properties? (e.g., clause
length distribution, proof complexity, only SAT / only UNSAT, structural
particularities, . . . )

• How did solvers in the 2022 anniversary track perform on the family?
Are there discrepancies between the globally best solver(s) and the best
solver(s) for that family? If so, can you find an explanation?

• Are the instances good to parallelize, i.e., what is the distribution over
the speedups which 2022 parallel solvers can achieve on the family?

Use Markus’ GBD tool1, performance data of the 2022 anniversary track,2 and
the proceedings of past SAT Competitions, where you should find one or several
abstracts describing the instances. You should not need to run a SAT solver nor
download/open a SAT instance for this task.

2 Planning via MaxSAT (4 Points)

Consider a classical (STRIPS-style) automated planning instance where each
action a is associated with a cost c(a) ∈ N+. We want to find a plan P =
⟨a1, . . . , an⟩ of minimum cost, i.e., minimizing C∗ :=

∑n
i=1 c(ai). We also know

an upper bound U on the optimal plan cost, i.e., C∗ ≤ U . Design a MaxSAT
encoding that results in a cost-optimal plan with a single MaxSAT call.

3 Clause Filtering in Distributed SAT (6 Points)

Distributed clause-sharing solvers like HordeSat and MallobSat filter a re-
peated clause based on exact syntactical equivalence (i.e., if a clause c is shared

1Basic online functionality: https://benchmark-database.de;
local installation via pip: https://github.com/Udopia/gbd

2https://satcompetition.github.io/2022/downloads.html

https://benchmark-database.de
https://github.com/Udopia/gbd
https://satcompetition.github.io/2022/downloads.html


successfully, then clause c will be blocked for some period). Find a way to
generalize this approach to subsumed clauses, i.e., if clause c is shared, then
all clauses c′ ⊇ c are blocked for some period. Provide a rough analysis of the
running time complexity and the memory footprint of your approach.

4 Miter Challenge (5+10 Points)

Devise a program which takes two CNF files of formulas F1 and F2 and which
outputs a CNF Fneq such that Fneq is satisfiable if and only if F1 ̸≡ F2. Your
program may perform non-trivial reasoning itself (e.g., transformations, simu-
lations, internal SAT calls). The running time of your approach is measured
as the running time of your program plus the running time of Kissat to solve
your program’s output Fneq. You receive 5 points for any correct submission
and up to 10 bonus points based on your approach’s performance. We will test
the approach on (a) equivalent formula pairs, e.g., obtained via preprocessing
techniques, and (b) “broken” instances of type (a) that are tampered with to
render the instances non-equivalent.

2


	Application-specific Analysis (8 Points)
	Planning via MaxSAT (4 Points)
	Clause Filtering in Distributed SAT (6 Points)
	Miter Challenge (5+10 Points)

