
Practical SAT Solving

Lecture 1

Markus Iser, Dominik Schreiber, Tomáš Balyo | April 15, 2024

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft www.kit.edu

https://www.kit.edu

• 14 Lectures: Mondays at 3:45 pm, room 301 (starting today)

• 6 Exercises: Tuesdays at 3:45 pm, room 301 (starting 4/23, every other week!)

• Bring your laptop if you can!

• Sign up:
• http://campus.studium.kit.edu

• Find material (slides, exercises, etc.):
• https://satlecture.github.io/kit2024/

2/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Organisation

http://campus.studium.kit.edu
https://satlecture.github.io/kit2024/

• Markus Iser, markus.iser@kit.edu
• post-doc at ITI Sanders, involved in this lecture since 2020
• expert on SAT solvers and benchmarks

• Dominik Schreiber, dominik.schreiber@kit.edu
• post-doc at ITI Sanders, involved in this lecture since 2023 (guest lectures before then)
• expert on massively parallel SAT solving

• Tomáš Balyo, tomas@filuta.ai
• previously post-doc at ITI Sanders, started this lecture in 2016 with Carsten Sinz
• now research engineer at a composite AI start-up
• will offer some guest lectures

3/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Lecturers

mailto:markus.iser@kit.edu
mailto:dominik.schreiber
mailto:tomas@filuta.ai

• You earn exercise points for doing homework and coming to class with your solutions.

• You can earn at least 120 exercise points during the semester (plus many more bonus points).
• Some exercises will be in the form of small implementation contests.
• Contest winners will receive bonus points.

• You must earn at least 60 points to participate in the oral exam.

• Bonus points for homework will improve your grade.

4/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Homework, Competitions, and Oral Exam

Efficient Methods for SAT Solving
Algorithms, Heuristics, Data Structures, Implementation Techniques, Parallelism, Proof Systems, . . .

Applications of SAT Solving
Verification of Hardware and Software, Planning, Scheduling, Cryptography, Explainable AI, . . .

Efficient Encodings of Problems into SAT
General Encoding Techniques, CNF Encodings of Constraints, Properties of CNF Encodings, . . .

Practical Hardness of SAT
Tractable Classes, Instance Structure, Hardest Instances, Proof Complexity, . . .

5/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Goals of this Lecture

Efficient Methods for SAT Solving
Algorithms, Heuristics, Data Structures, Implementation Techniques, Parallelism, Proof Systems, . . .

Applications of SAT Solving
Verification of Hardware and Software, Planning, Scheduling, Cryptography, Explainable AI, . . .

Efficient Encodings of Problems into SAT
General Encoding Techniques, CNF Encodings of Constraints, Properties of CNF Encodings, . . .

Practical Hardness of SAT
Tractable Classes, Instance Structure, Hardest Instances, Proof Complexity, . . .

5/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Goals of this Lecture

Efficient Methods for SAT Solving
Algorithms, Heuristics, Data Structures, Implementation Techniques, Parallelism, Proof Systems, . . .

Applications of SAT Solving
Verification of Hardware and Software, Planning, Scheduling, Cryptography, Explainable AI, . . .

Efficient Encodings of Problems into SAT
General Encoding Techniques, CNF Encodings of Constraints, Properties of CNF Encodings, . . .

Practical Hardness of SAT
Tractable Classes, Instance Structure, Hardest Instances, Proof Complexity, . . .

5/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Goals of this Lecture

Efficient Methods for SAT Solving
Algorithms, Heuristics, Data Structures, Implementation Techniques, Parallelism, Proof Systems, . . .

Applications of SAT Solving
Verification of Hardware and Software, Planning, Scheduling, Cryptography, Explainable AI, . . .

Efficient Encodings of Problems into SAT
General Encoding Techniques, CNF Encodings of Constraints, Properties of CNF Encodings, . . .

Practical Hardness of SAT
Tractable Classes, Instance Structure, Hardest Instances, Proof Complexity, . . .

5/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Goals of this Lecture

In this lecture, propositional formulas are given in conjunctive normal form (CNF), and if not, we convert them.

CNF Formulas
• A CNF formula is a conjunction (and = ∧) of clauses.

• A clause is a disjunction (or = ∨) of literals.

• A literal is a Boolean variable x (positive literal) or its negation x (negative literal).

Example (CNF Formula)
F = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1)

vars(F) = {x1, x2, x3}
lits(F) = {x1, x1, x2, x2, x3}

clss(F) = {{x1, x2}, {x1, x2, x3}, {x1}}

Typically, a CNF formula is given as a set of clauses, where each clause is a set of literals (as in clss(F)).

6/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Basic Definitions

The Satisfiability Problem is to determine whether a given formula is satisfiable.
A CNF formula F is satisfiable iff there exists an assignment to vars(F) that satisfies F .

Satisfying Assignment
Given a CNF formula F over variables V := vars(F), a truth assignment ϕ : V → {⊤,⊥} assigns a truth value
⊤ (True) or ⊥ (False) to each Boolean variable in V .

We say that ϕ satisfies

• a CNF formula if it satisfies all of its clauses

• a clause if it satisfies at least one of its literals

• a positive literal x if ϕ(x) = ⊤
• a negative literal x if ϕ(x) = ⊥

7/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Satisfiable or Unsatisfiable?)
F1 = {{x1}}

F2 = {{x1}, {x1}}

F3 = {{x2, x8, x3}}

F4 = {{x1}, {x2}, {x2, x1}}

F5 = {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}}

F6 = {{x1, x2}, {x1, x2, x3}, {x1}}

Edge Cases:
What are the shortest satisfiable / unsatisfiable CNF formulas?

8/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Satisfiable or Unsatisfiable?)
F1 = {{x1}}

F2 = {{x1}, {x1}}

F3 = {{x2, x8, x3}}

F4 = {{x1}, {x2}, {x2, x1}}

F5 = {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}}

F6 = {{x1, x2}, {x1, x2, x3}, {x1}}

Edge Cases:
What are the shortest satisfiable / unsatisfiable CNF formulas?

8/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Scheduling)
Schedule a meeting of Adam, Bridget, Charles, and Darren considering the following constraints

• Adam can only meet on Monday or Wednesday

• Bridget cannot meet on Wednesday

• Charles cannot meet on Friday

• Darren can only meet on Thursday or Friday

vars(F) = {x1, x2, x3, x4, x5}
F =

(x1 ∨ x3) ∧ (x3) ∧ (x5) ∧ (x4 ∨ x5)

9/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Scheduling)
Schedule a meeting of Adam, Bridget, Charles, and Darren considering the following constraints

• Adam can only meet on Monday or Wednesday

• Bridget cannot meet on Wednesday

• Charles cannot meet on Friday

• Darren can only meet on Thursday or Friday

vars(F) = {x1, x2, x3, x4, x5}
F = (x1 ∨ x3) ∧ (x3) ∧ (x5) ∧ (x4 ∨ x5)

9/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Scheduling)
Schedule a meeting of Adam, Bridget, Charles, and Darren considering the following constraints

• Adam can only meet on Monday or Wednesday

• Bridget cannot meet on Wednesday

• Charles cannot meet on Friday

• Darren can only meet on Thursday or Friday

vars(F) = {x1, x2, x3, x4, x5}
F = (x1 ∨ x3) ∧ (x3) ∧ (x5) ∧ (x4 ∨ x5)

∧ AtMostOne(x1, x2, x3, x4, x5)

9/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

Example (Scheduling)
Schedule a meeting of Adam, Bridget, Charles, and Darren considering the following constraints

• Adam can only meet on Monday or Wednesday

• Bridget cannot meet on Wednesday

• Charles cannot meet on Friday

• Darren can only meet on Thursday or Friday

vars(F) = {x1, x2, x3, x4, x5}
F = (x1 ∨ x3) ∧ (x3) ∧ (x5) ∧ (x4 ∨ x5)

∧ (x1 ∨ x2) ∧ (x1 ∨ x3) ∧ (x1 ∨ x4) ∧ (x1 ∨ x5)

∧ (x2 ∨ x3) ∧ (x2 ∨ x4) ∧ (x2 ∨ x5)

∧ (x3 ∨ x4) ∧ (x3 ∨ x5) ∧ (x4 ∨ x5)

Is this Scheduling Instance Satisfiable?

9/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Satisfiability

A decision problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

SAT is NP-complete (Cook-Levin Theorem)
• SAT is in NP

Proof: solution can be checked in polynomial time

• Every problem in NP can be reduced to SAT in polynomial time
Proof: encode the run of a non-deterministic Turing machine as a CNF formula

Consequences of NP-completeness of SAT
• We do not have a polynomial algorithm for SAT (yet)

• If P ̸= NP then we will never have a polynomial algorithm for SAT

• All the known NP-complete algorithms have exponential runtime in the worst case

Example (Hardness)
Try it yourself: http://www.cs.utexas.edu/~marijn/game/

10/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Complexity of Propositional Satisfiability

http://www.cs.utexas.edu/~marijn/game/

A decision problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

SAT is NP-complete (Cook-Levin Theorem)
• SAT is in NP

Proof: solution can be checked in polynomial time

• Every problem in NP can be reduced to SAT in polynomial time
Proof: encode the run of a non-deterministic Turing machine as a CNF formula

Consequences of NP-completeness of SAT
• We do not have a polynomial algorithm for SAT (yet)

• If P ̸= NP then we will never have a polynomial algorithm for SAT

• All the known NP-complete algorithms have exponential runtime in the worst case

Example (Hardness)
Try it yourself: http://www.cs.utexas.edu/~marijn/game/

10/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Complexity of Propositional Satisfiability

http://www.cs.utexas.edu/~marijn/game/

Historic Landmarks
• 1960: DP Algorithm (first SAT solving algorithm)

• 1962: DPLL Algorithm (improving upon DP algorithm)

• 1971: SAT is NP-Complete

• 1992: Local Search Algorithm Selman et al.: A New Method for Solving Hard Satisfiability Problems

• 1992: The First International SAT Competition (followed by 1993, 1996, since 2002 every year)

• 1996: The First International SAT Conference (Workshop) (followed by 1998, since 2000 every year)

• 1999: Conflict Driven Clause Learning (CDCL) Algorithm

Advancements From 1992 to 2024, SAT solvers have improved by several orders of magnitude in terms of
feasible problem size. From 100 variables and 200 clauses to 21,000,000 variables and 96,000,000 clauses.

11/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

History of Propositional Satisfiability

http://doi.acm.org/10.1145/321033.321034
https://doi.acm.org/10.1145/368273.368557
https://dl.acm.org/doi/10.1145/800157.805047
http://www.aaai.org/Library/AAAI/1992/aaai92-068.php
https://doi.org/10.1109/12.769433

12/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

SAT Conference 2022

• Hardware verification and design
• Major hardware companies (Intel, . . .) use SAT to verify chip designs
• Computer Aided Design of electronic circuits

• Software verification
• SAT-based SMT solvers are used to verify Microsoft software products

(also great interest at Amazon – AWS software in particular)
• Embedded software in cars, airplanes, refrigerators, . . .
• Unix utilities

• Automated planning and scheduling in Artificial Intelligence
• Job shop scheduling, train scheduling, multi-agent path finding

• Cryptanalysis
• Test/prove properties of cryptographic ciphers, hash functions

• Number theoretic problems (Pythagorean triples, grid coloring)

• Solving other NP-hard problems (coloring, clique, . . .)

13/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Applications of SAT Solving

14/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

SAT Solving in the News

Problem Definition
Is it possible to assign to each integer 1, 2, . . . , n one of two colors such that if a2 + b2 = c2 then a, b and c do
not all have the same color.

• Solution: Nope

• for n = 7825 it is not possible

• proof obtained by a SAT solver has 200 Terabytes – back then the largest Math proof yet

How to encode this?
• for each integer i we have a Boolean variable xi , xi = 1 if color of i is 1, xi = 0 otherwise.

• for each a, b, c such that a2 + b2 = c2 we have two clauses: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

15/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Pythagorean Triples

Problem Definition
Is it possible to assign to each integer 1, 2, . . . , n one of two colors such that if a2 + b2 = c2 then a, b and c do
not all have the same color.

• Solution: Nope

• for n = 7825 it is not possible

• proof obtained by a SAT solver has 200 Terabytes – back then the largest Math proof yet

How to encode this?
• for each integer i we have a Boolean variable xi , xi = 1 if color of i is 1, xi = 0 otherwise.

• for each a, b, c such that a2 + b2 = c2 we have two clauses: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

15/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Pythagorean Triples

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011?

No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011?

No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011? No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011? No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011? No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011? No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced 0s and no k equally spaced 1s.

Example (n = 8, k = 3)
Find a binary sequence x1, . . . , x8 that has no three equally spaced 0s and no three equally spaced 1s.

• What about 01001011? No, the 1s at x2, x5, x8 are equally spaced.

• 6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

• Extending the problem to 9 digits, no solutions remains. How can we show this with a SAT solver?

• Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

• Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123, 234, . . . , 789, 135, 246, . . . , 579, 147, 258, 369, 159,
1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

16/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Arithmetic Progressions

Theorem (van der Waerden)
If n is sufficiently large, every sequence x1, . . . , xn of numbers 0 ≤ xi < r contains a number that occurs at
least k times equally spaced.

• The smallest such number is the van der Waerden number W (r , k).

• For larger r , k the numbers are only partially known.

Example (Van der Waerden Numbers)
• We have seen that W (2, 3) = 9.

• W (2, 6) = 1132 was shown in [2008 by Kouril and Paul] (using a SAT solver!)

• but W (2, 7) is yet unknown.

• 22r22k+9

is an upper bound for W (r , k) (shown in [2001 by Gowers]).

17/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Background: Van der Waerden Numbers

http://dx.doi.org/10.1080/10586458.2008.10129025
http://dx.doi.org/10.1007/s00039-001-0332-9

Theorem (van der Waerden)
If n is sufficiently large, every sequence x1, . . . , xn of numbers 0 ≤ xi < r contains a number that occurs at
least k times equally spaced.

• The smallest such number is the van der Waerden number W (r , k).

• For larger r , k the numbers are only partially known.

Example (Van der Waerden Numbers)
• We have seen that W (2, 3) = 9.

• W (2, 6) = 1132 was shown in [2008 by Kouril and Paul] (using a SAT solver!)

• but W (2, 7) is yet unknown.

• 22r22k+9

is an upper bound for W (r , k) (shown in [2001 by Gowers]).

17/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Background: Van der Waerden Numbers

http://dx.doi.org/10.1080/10586458.2008.10129025
http://dx.doi.org/10.1007/s00039-001-0332-9

Example (McGregor Graph, 110 nodes, planar)
Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, Martin Gardner’s column
“Mathematical Games”)

18/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring

Example (McGregor Graph, 110 nodes, planar)
Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, Martin Gardner’s column
“Mathematical Games”)

18/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:

• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:

• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:

• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:
• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:
• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:
• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:
• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)
Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node,
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding
• Variables:

• use k · |V | Boolean variables vj for v ∈ V , where vj is true, if node v gets color j (1 ≤ j ≤ k).

• Clauses:
• Every node gets a color:

(v1 ∨ · · · ∨ vk) for v ∈ V

• Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E , 1 ≤ j ≤ k

• Suppress multiple colors for a node: At-most-one constraints

19/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: SAT Encoding

Example (Graph Coloring Problem)

• V = {u, v ,w , x , y}
• Colors: red (=1), green (=2), blue (=3)

• Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)

...
(y1 ∨ y2 ∨ y3)

“adjacent nodes have different colors”
(u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

20/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: Example

Example (Graph Coloring Problem)

• V = {u, v ,w , x , y}
• Colors: red (=1), green (=2), blue (=3)

• Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)

...
(y1 ∨ y2 ∨ y3)

“adjacent nodes have different colors”
(u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

20/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Graph Coloring: Example

SAT solvers are command line applications that take as argument a text file with a formula (DIMACS format).

Example (Input)
c comments, ignored by solver

p cnf 7 22

1 -2 7 0

...

-7 -3 -2 0

Example (Output)
c comments, usually some statistics about the solving

s SATISFIABLE

v 1 2 -3 -4

v 5 -6 -7 0

21/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Using a SAT Solver

SAT solvers are command line applications that take as argument a text file with a formula (DIMACS format).

Example (Input)
c comments, ignored by solver

p cnf 7 22

1 -2 7 0

...

-7 -3 -2 0

Example (Output)
c comments, usually some statistics about the solving

s SATISFIABLE

v 1 2 -3 -4

v 5 -6 -7 0

21/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Using a SAT Solver

Let’s try it!
• Download and Build a SAT solver:

• CaDiCaL
• Alternatives: Kissat, Minisat, CryptoMinisat, Maplesat, . . .

• Download a CNF formula:
• Global Benchmark Database

• Run the SAT solver with the CNF formula as input

22/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Running a SAT Solver

https://github.com/arminbiere/cadical
https://github.com/arminbiere/kissat
https://github.com/niklasso/minisat
https://github.com/msoos/cryptominisat
https://maplesat.github.io/
https://benchmark-database.de

In many applications, we solve a sequence of similar SAT instances:

Planning, Bounded Model Checking, SMT, Scheduling, MaxSAT, . . .

Incremental SAT Solving
• The SAT solver is initialized once

• Each call to solve() takes a set of assumptions as input
→ assumptions are literals that serve as a partial assignment to their variables

• Like this also clauses can be activated/deactivated in the SAT solver

• Between solve() calls, new clauses can be added

• Advantages:

• solver remembers learned clauses, preprocessing, variable scores (heuristics), etc.
• (de)initialization overheads removed

23/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Incremental SAT Solving

In many applications, we solve a sequence of similar SAT instances:

Planning, Bounded Model Checking, SMT, Scheduling, MaxSAT, . . .

Incremental SAT Solving
• The SAT solver is initialized once

• Each call to solve() takes a set of assumptions as input
→ assumptions are literals that serve as a partial assignment to their variables

• Like this also clauses can be activated/deactivated in the SAT solver

• Between solve() calls, new clauses can be added

• Advantages:
• solver remembers learned clauses, preprocessing, variable scores (heuristics), etc.
• (de)initialization overheads removed

23/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Incremental SAT Solving

IPASIR = Re-entrant Incremental Satisfiability Application Program Interface (acronym reversed)

IPASIR
• Defined for the 2015 SAT Race to unify incremental SAT solver interfaces

• IPASIR has become a standard interface of incremental SAT solving

• Version 2 is in the works

24/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

IPASIR: Incremental Library Interface for SAT Solvers

https://github.com/biotomas/ipasir

IPASIR = Re-entrant Incremental Satisfiability Application Program Interface (acronym reversed)

IPASIR
• Defined for the 2015 SAT Race to unify incremental SAT solver interfaces

• IPASIR has become a standard interface of incremental SAT solving

• Version 2 is in the works

24/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

IPASIR: Incremental Library Interface for SAT Solvers

https://github.com/ipasir2

• Clauses are added one literal at a time
• To add (x1 ∨ x4) call add(1); add(-4); add(0);

• You can call a SAT solver with a set of assumptions
• Assumptions are basically temporary decision literals

• Assumptions are cleared after each solve() call

• Clause removal is controlled with activation literals
• You must know ahead which clauses you will maybe want to remove

• Add the clause with an additional fresh variable (activation literal)

• Example: instead of (x1 ∨ x2) add (x1 ∨ x2 ∨ a1)

• solve with with assumption a1 to enforce (x1 ∨ x2)

25/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

IPASIR Overview

signature return the name and version of the solver

init initialize the solver, the pointer it returns is used for the rest of the functions

add add clauses, one literal at a time

assume add an assumption, the assumptions are cleared after a solve() call

solve solve the formula, return SAT, UNSAT or INTERRUPTED

val return the truth value of a variable (if SAT)

failed returns true if the given assumption was part of reason for UNSAT

For more details and examples of usage see https://github.com/biotomas/ipasir

26/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

IPASIR Functions

https://github.com/biotomas/ipasir

27/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

IPASIR Solver States

Let a satisfiable formula F be given.

Essential Variables
• Satifying assignments can be partial, i.e., some variables are not assigned but still the formula is satisfied.

• A variable x is essential if and only x it has to be assigned (True or False) in each satisfying assignment.

Task: find all the essential variables of a given satisfiable formula
• use Dual Rail Encoding – for each variable x add two new variables xP and xN , replace each positive

(negative) occurrence of x with xP (xN), add a clause (xP ∨ xN) (meaning x cannot be both true and false).

• for each variable x solve the formula with the assumptions xP and xN . If the formula is UNSAT then x is
essential.

Let’s implement it!

28/28 April 15, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Use Case: Essential Variables

	Organisational
	Basic Definitions
	Introductory Examples
	Incremental SAT

