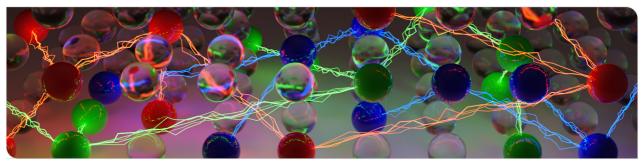


Practical SAT Solving

Lecture 2

Markus Iser, Dominik Schreiber, Tomáš Balyo | April 22, 2024



www.kit.edu

Overview

Recap. Lecture 1

- · Satisfiability: Propositional Logic, CNF Formulas, NP-completeness, Applications
- Examples: Pythagorean Triples, Arithmetic Progressions, k-Colorability
- Incremental SAT: IPASIR, Sample Code

Today's Topics

- Tractable Subclasses
- · Constraint Encodings
- Encoding Techniques

Karlsruher Institut für Technologie

Tractable Subclasses

Karlsruher Institut für Technologie

Tractable Subclasses

Tractable Subclasses (cf. Schaefer, 1978)

• 2-SAT

Exactly two literals per clause

• HORN-SAT

At most one positive literal per clause

Inverted HORN-SAT

At most one negative literal per clause

Positive / Negative

Literals occur only pure (either positive or negative)

• XOR-SAT

No clauses, only XOR constraints

2-SAT aka. Binary or Quadratic SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

$$\begin{split} F_5 &= \{\{x_1, x_2\}, \{\overline{x_1}, x_2\}, \{x_1, \overline{x_2}\}, \{\overline{x_1}, \overline{x_2}\}\}\\ F_7 &= \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\} \end{split}$$

2-SAT aka. Binary or Quadratic SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

$$\begin{split} F_5 &= \{\{x_1, x_2\}, \{\overline{x_1}, x_2\}, \{x_1, \overline{x_2}\}, \{\overline{x_1}, \overline{x_2}\}\}\\ F_7 &= \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\} \end{split}$$

Linear Time Algorithm for 2-SAT (cf. Aspvall et al., 1979)

• Construct Implication Graph:

Directed graph with a vertex for each literal and two edges $\bar{l}_1 \rightarrow l_2$ and $\bar{l}_2 \rightarrow l_1$ for each clause $\{l_1, l_2\}$

• Find Strongly Connected Components (SCC)

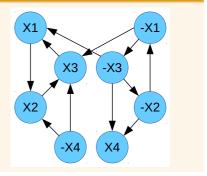
SCC: There is a path from every vertex to every other vertex

Check for Complementary Literals in the same SCC

Implication Graph

Example (Implication Graph)

 $F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$



Algorithm Engineering

5/23 April 22, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving

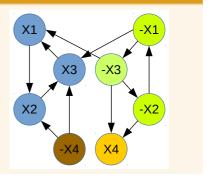
Algorithm Engineering

Implication Graph

Example (Implication Graph)

 $F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$

- Find Strongly Connected Components (SCC)
- Tarjan's algorithm finds SCCs in $\mathcal{O}(|V| + |E|)$
- Complexity: O(n + m), where *m* is the number of clauses



5/23 April 22, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving

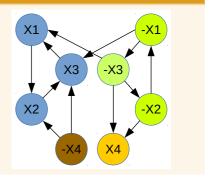
Algorithm Engineering

Implication Graph

Example (Implication Graph)

 $F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$

- If an SCC contains both x and \overline{x} , the formula is UNSAT
 - Why?

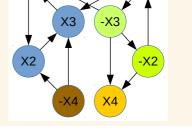


Implication Graph

Example (Implication Graph)

 $F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$

- If an SCC contains both x and \overline{x} , the formula is UNSAT
 - x implies its own negation!
 - · Literals in an SCC must be either all true or all false
- What about SAT? How to get a solution?



X1

-X1

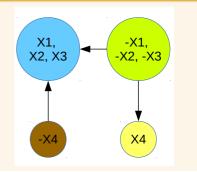
5/23 April 22, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving

Implication Graph

Example (Implication Graph)

 $F_7 = \{\{\overline{x_1}, x_2\}, \{\overline{x_2}, x_3\}, \{\overline{x_3}, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$

- If an SCC contains both x and \overline{x} , the formula is UNSAT
 - x implies its own negation!
 - · Literals in an SCC must be either all true or all false
- What about SAT? How to get a solution?
 - · Contract each SCC into one vertex
 - In reverse topological order, set unassigned literals to true.



HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

$$\begin{split} F_6 &= \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\} \\ &\equiv \left(x_1 \to x_2\right) \land \left((x_1 \land x_2) \to x_3 \right) \land \left(\top \to x_1 \right) \end{split}$$

HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

$$\begin{split} F_6 &= \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\} \\ &\equiv \left(x_1 \to x_2\right) \land \left((x_1 \land x_2) \to x_3 \right) \land \left(\top \to x_1 \right) \end{split}$$

Solving Horn Formulas

- · Propagate until fixpoint
- If $\top \to \bot$ then the formula is UNSAT. Otherwise it is SAT.
- · Construct a satisfying assignment by setting the remaining variables to false

Hidden Horn aka. Renamable or Disguised Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

 $F_{8} = \{\{x_{1}, x_{2}, x_{4}\}, \{x_{2}, \overline{x_{4}}\}, \{x_{1}\}\}$ $\rightsquigarrow \{\{\overline{x_{1}}, \overline{x_{2}}, x_{4}\}, \{\overline{x_{2}}, \overline{x_{4}}\}, \{\overline{x_{1}}\}\}$

How to recognize a Hidden Horn formula? And how to hard is it?

Hidden Horn aka. Renamable or Disguised Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

 $F_{8} = \{\{x_{1}, x_{2}, x_{4}\}, \{x_{2}, \overline{x_{4}}\}, \{x_{1}\}\}$ $\rightsquigarrow \{\{\overline{x_{1}}, \overline{x_{2}}, x_{4}\}, \{\overline{x_{2}}, \overline{x_{4}}\}, \{\overline{x_{1}}\}\}$

How to recognize a Hidden Horn formula? And how to hard is it?

Recognizing Hidden Horn Formula F

Construct 2-SAT formula R_F that contains the clause $\{l_1, l_2\}$ iff there is a clause $C \in F$ such that $\{l_1, l_2\} \subseteq C$.

- Example: $R_{F_8} = \{\{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_4\}, \{x_2, \overline{x_4}\}\}$
- If the 2-SAT formula is satisfiable, then F is Hidden Horn
- If $x_i = true$ in ϕ , then x_i needs to be renamed to \overline{x}_i

Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

 $\textit{F}_{9} = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$

How to solve a Mixed Horn formula? And how to hard is it?

Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

 $\textit{F}_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$

How to solve a Mixed Horn formula? And how to hard is it?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn non-binary clause $C = \{l_1, l_2, l_3, \dots\},\$

- for each but one positive $I_i \in C$ introduce a new variable I'_i and replace I_i in C by $\overline{I'_i}$
- add clauses $\{I'_i, I_i\}, \{\overline{I'_i}, \overline{I_i}\}$ to establish $I_i = \overline{I'_i}$

Next up: CNF Encodings

Elementary Encodings

- Tseitin Transformation
- · Cardinality Constraints
- Finite Domain Encodings

Properties of Encodings

- · Size: Number of Variables and Clauses
- Propagation consistency: Can the encoding ensure consistency through propagation?

Encoding Circuits

Given a propositional formula F with operations \land , \lor , and \neg , how can it be encoded in CNF?

Example (CNF Conversion) $F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$ (Given Formula)

Naive / Direct Conversion

Encoding Circuits

Given a propositional formula *F* with operations \land , \lor , and \neg , how can it be encoded in CNF?

Example (CNF Conversion)	
$F=\neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$	(Given Formula)
$= (x \land \neg y) \lor z \lor (x \land \neg w)$	(Negation Normal Form)

Naive / Direct Conversion

· Convert to Negation Normal Form (NNF)

Encoding Circuits

Given a propositional formula F with operations \land , \lor , and \neg , how can it be encoded in CNF?

Example (CNF Conversion)	
$F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$	(Given Formula)
$= (x \land \neg y) \lor z \lor (x \land \neg w)$	(Negation Normal Form)
$= (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor x) \land (\neg y \lor z \lor \neg w)$	(Conjunctive Normal Form)

Naive / Direct Conversion

- · Convert to Negation Normal Form (NNF)
- · Apply distributive law to get CNF
- Problem: Applying the distributive law may result in an exponential blow-up.

Algorithm Engineering

Tseitin Encoding

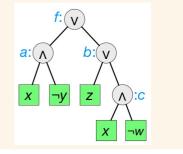
Idea: Introduce new variables for subformulas.

Example (Tseitin Conversion)

 $F = (x \land \neg y) \lor z \lor (x \land \neg w)$ (Negation Normal Form)

 $\stackrel{\scriptscriptstyle{\mathsf{SAT}}}{=} (c \leftrightarrow x \land \neg w) \land \dots \land (f \leftrightarrow a \lor b) \land f \quad \text{(Tseitin Encoding)}$

- Define new variables: $a \leftrightarrow x \wedge \overline{y}$, $f \leftrightarrow a \lor b$, ...
- Encode definitions in CNF: $(\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land \dots$
- One additional clause (f) to assert that F must be true



Karlsruher Institut für Technologie

Tseitin Encoding

The Tseitin-Encoding $\mathcal{T}(F)$ of a propositional formula F over connectives $\{\wedge, \lor, \neg\}$ is specified as follows.

Definition of Tseiting Encoding	
$\mathcal{T}(F) = d_{F} \land \mathcal{T}^*(F)$	(Root Formula)
$\mathcal{T}^*(F) = egin{cases} \mathcal{T}_{def}(F) \wedge \mathcal{T}^*(G) \wedge \mathcal{T}^*(G), \ \mathcal{T}_{def}(F) \wedge \mathcal{T}^*(G), \ \mathcal{T}rue, \end{cases}$	$ \begin{array}{ll} {}^{*}(H), & \text{if } F = G \circ H \text{ and } \circ \in \{ \land, \lor \} \\ & \text{if } F = \neg G \\ & \text{if } F \in \mathcal{V} \end{array} \end{array} \tag{Recursion} $
$\mathcal{T}_{def}(F) = egin{cases} (\overline{d_{F}} \lor d_{G}) \land (\overline{d_{F}} \lor d_{G} \ (\overline{d_{F}} \lor d_{G} \lor d_{H}) \lor (a_{G} \ (\overline{d_{F}} \lor \overline{d_{G}}) \land (d_{F} \lor d_{G}) \ (d_{F} \lor d_{G}) \land (d_{F} \lor d_{G}) \end{cases}$	$ \begin{array}{ll} \wedge (d_F \vee \overline{d_G} \vee \overline{d_H}), & \text{if } F = G \wedge H \\ \vee \overline{d_G}) \wedge (d_F \vee \overline{d_H}), & \text{if } F = G \vee H \\ 0, & \text{if } F = \neg G \end{array} $ (Definitions)

 $\mathcal{T}(F)$ introduces a new variable d_S for each subformula S of F and is satisfiable iff F is satisfiable.

Karlsruher Institut für Technologie

Tseitin Encoding

Example (Tseitin Encoding) $F = \overbrace{(x \land \neg y)}^{a, S_a} \lor (z \lor \overbrace{(x \land \neg w)}^{c, S_c})$ (Encoding / Auxiliary Variables) b, S_b $\stackrel{\text{\tiny SAT}}{=} \mathcal{T}_{\mathsf{def}}(S_c) \land \mathcal{T}_{\mathsf{def}}(S_b) \land \mathcal{T}_{\mathsf{def}}(S_a) \land \mathcal{T}_{\mathsf{def}}(F) \land f$ $\stackrel{\text{SAT}}{=} \cdots \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land (\overline{f} \lor a \lor b) \land f$ (Tseitin Encoding) $\mathcal{T}_{dof}(F)$ $\stackrel{\text{\tiny SAT}}{=} (c \leftrightarrow x \land \neg w) \land \cdots \land (f \leftrightarrow a \lor b) \land f$

Simplification: treat negative literals like variables in $\mathcal{T}(F)$

Algorithm Engineering

Tseitin Encoding: Plaisted-Greenbaum Optimization

Example (Plaisted-Greenbaum Optimization)

 $\mathcal{T}(F) = f \land (f \leftrightarrow a \lor b) \land (a \leftrightarrow x \land \neg y) \land (b \leftrightarrow z \lor c) \land (c \leftrightarrow x \land \neg w)$

$$= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b})$$

$$\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y)$$

$$\land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c})$$

$$\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w)$$

Relaxed Transformation: Exploit Don't Cares in monotonic functions

Model Duplication: Unconstrained encoding variables introduce additional models Semantic Coupling: $T(F) \models T^{PG}(F) \models F$

Tseitin Encoding: Plaisted-Greenbaum Optimization

Example (Plaisted-Greenbaum Optimization)

 $\mathcal{T}^{PG}(F) = f \land (f \to a \lor b) \land (a \to x \land \neg y) \land (b \to z \lor c) \land (c \to x \land \neg w)$ $= f \land (\overline{f} \lor a \lor b) \land (\overline{f} \lor \overline{a}) \land (\overline{f} \lor \overline{b})$

$$\wedge (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (\overline{a} \lor \overline{x} \lor y)$$
$$\wedge (\overline{b} \lor z \lor c) \land (\overline{b} \lor \overline{z}) \land (\overline{b} \lor \overline{c})$$

$$\wedge (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (\overline{c} \lor \overline{x} \lor w)$$

 $\stackrel{\scriptscriptstyle{\mathsf{SAT}}}{=} (a \lor b) \land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (\overline{b} \lor z \lor c) \land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w})$

Relaxed Transformation: Exploit Don't Cares in monotonic functions

Model Duplication: Unconstrained encoding variables introduce additional models

Semantic Coupling: $\mathcal{T}(F) \models \mathcal{T}^{PG}(F) \models F$

Tseitin Encoding: Plaisted-Greenbaum Optimization

Definition of Plaisted Greenbaum Encoding

 $\mathcal{T}(F) = d_F \wedge \mathcal{T}^1(F)$ $\mathcal{T}^{p}(F) = \begin{cases} \mathcal{T}^{p}_{\mathsf{def}}(F) \wedge \mathcal{T}^{p}(G) \wedge \mathcal{T}^{p}(H), & \text{if } F = G \circ H \text{ and } \circ \in \{\wedge, \lor\} \\ \mathcal{T}^{p}_{\mathsf{def}}(F) \wedge \mathcal{T}^{p \oplus 1}(G), & \text{if } F = \neg G \\ \mathcal{T}^{\mathsf{rue}}, & \text{if } F \in \mathcal{V} \end{cases}$ $\mathcal{T}_{\mathsf{def}}^{1}(F) = \begin{cases} (\overline{d_{F}} \lor d_{G}) \land (\overline{d_{F}} \lor d_{H}), & \text{if } F = G \land H \\ (\overline{d_{F}} \lor d_{G} \lor d_{H}), & \text{if } F = G \lor H \\ (\overline{d_{F}} \lor \overline{d_{G}}), & \text{if } F = \neg G \end{cases}$ $\mathcal{T}_{def}^{0}(F) = \begin{cases} (d_{F} \vee \overline{d_{G}} \vee \overline{d_{H}}), & \text{if } F = G \wedge H \\ (d_{F} \vee \overline{d_{G}}) \wedge (d_{F} \vee \overline{d_{H}}), & \text{if } F = G \vee H \\ (d_{F} \vee d_{G}), & \text{if } F = \neg G \end{cases}$

Recap

Elementary Encodings

- Tseitin Transformation
 - · Tseitin encoding allows to carry over structure to CNF
 - · Formula size linear in the number of subformulas (of bounded arity)
- · Cardinality Constraints
- Finite Domain Encodings

Recap

Elementary Encodings

- Tseitin Transformation
 - · Tseitin encoding allows to carry over structure to CNF
 - · Formula size linear in the number of subformulas (of bounded arity)
- · Cardinality Constraints
- Finite Domain Encodings

Next Up

Cardinality Constraints

At-Most-One Constraints

Notation: AtMostOne (x_1, \ldots, x_n) or $\leq 1 (x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq 1$

Not more than one literal from x_1, \ldots, x_n is set to True.

Direct / Pairwise Encoding

$$\mathcal{E}\left[\leq \mathbf{1} \left(x_1, \ldots, x_n \right) \right] = \left\{ \{ \overline{x_i}, \overline{x_j} \} \mid \mathbf{1} \leq i < j \leq n \right\}$$

Size: $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ clauses

At-Most-One Constraints

Notation: AtMostOne (x_1, \ldots, x_n) or $\leq 1 (x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq 1$

Not more than one literal from x_1, \ldots, x_n is set to True.

Direct / Pairwise Encoding

$$\mathcal{E}\left[\leq \mathbf{1}\left(x_{1},\ldots,x_{n}\right)\right] = \left\{\left\{\overline{x_{i}},\overline{x_{j}}\right\} \mid \mathbf{1} \leq i < j \leq n\right\}$$

Size: $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$ clauses

Different Encodings: Size Complexity and Consistency

Encoding	Clauses	Enc. Variables	Consistency
Pairwise Encoding	$\mathcal{O}(n^2)$	0	direct
Tree Encoding	$\mathcal{O}(n \log n)$	log n	propagate
Ladder Encoding	$\mathcal{O}(n)$	n	propagate

Cardinality Constraints

Notation: $\leq k (x_1, \ldots, x_n)$ or $\sum_{i=1}^{n} x_i \leq k$

Not more than k literals from x_1, \ldots, x_n are set to True.

Direct Encoding

$$\mathcal{E}\left[\leq k\left(x_{1},\ldots,x_{n}\right)\right] = \left\{\left\{\overline{x_{i_{1}}},\ldots,\overline{x_{i_{k+1}}}\right\} \mid 1 \leq i_{1} < \cdots < i_{k+1} \leq n\right\}$$

Size: $\binom{n}{k+1}$ clauses^a

 $a \approx 2^n / \sqrt{n}$ by Stirling's Approx. for the worst case $k = \lceil n/2 \rceil$

Cardinality Constraints

Notation: $\leq k (x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq k$

Not more than *k* literals from x_1, \ldots, x_n are set to True.

Direct Encoding $\mathcal{E}[\leq k(x_1, \dots, x_n)] = \{\{\overline{x_{i_1}}, \dots, \overline{x_{i_{k+1}}}\} \mid 1 \leq i_1 < \dots < i_{k+1} \leq n\}$ Size: $\binom{n}{k+1}$ clauses^a

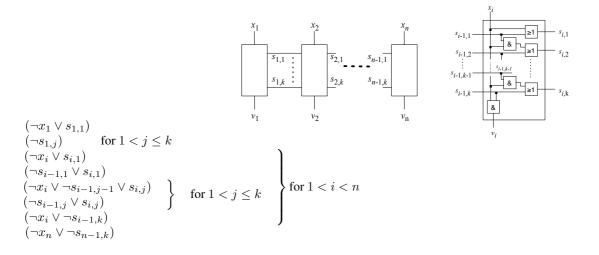
 $a \approx 2^n / \sqrt{n}$ by Stirling's Approx. for the worst case $k = \lceil n/2 \rceil$

Different Encodings: Size Complexity and Consistency

Encoding	Clauses	Enc. Variables	Consistency
Direct Encoding	$\binom{n}{k+1}$	0	direct
Sequential Counter Encoding	$\mathcal{O}(n \cdot k)$	$\mathcal{O}(n \cdot k)$	propagate
Parallel Counter Encoding	$\mathcal{O}(n)$	$\mathcal{O}(n)$	search

Cardinality Constraints: Sequential Counter Encoding

Idea: encode count-and-compare hardware circuit (cf. Sinz, 2005)



Recap

Elementary Encodings

- Tseitin Transformation
 - · Tseitin encoding allows to carry over structure to CNF
 - · Formula size linear in the number of subformulas (of bounded arity)
- · Cardinality Constraints
 - · Size of encoding vs. Complexity of consistency
 - · Choice of encoding matters
- · Finite Domain Encodings

Recap

Elementary Encodings

- Tseitin Transformation
 - · Tseitin encoding allows to carry over structure to CNF
 - · Formula size linear in the number of subformulas (of bounded arity)
- · Cardinality Constraints
 - · Size of encoding vs. Complexity of consistency
 - · Choice of encoding matters
- Finite Domain Encodings

Next Up

Finite Domain Encodings

Finite-Domain Variables

Common in combinatorial problems. Discrete, finite value domains: $x \in \{v_1, \ldots, v_n\}$

Relationships between them expressed as equality-formulas, e.g.: $x = v_3 \Rightarrow y \neq v_2$.

Direct / One-hot encoding

- Boolean variables x_v: "x takes value v"
- Must encode that each variable takes exactly one value from its domain (by using at-least-one/at-most-one constraints)
- · Encoding of variables' constraints simple

Karlsruher Institut für Technologie

Finite-Domain Variables

Common in combinatorial problems: finite domain variables, e.g.: $x \in \{v_1, \ldots, v_n\}$

Relationships between them expressed as equality-formulas, e.g.: $x = v_3 \Rightarrow y \neq v_2$.

Log / Binary encoding

- Boolean variables b_i^x for $0 \le i < \lceil \log_2 n \rceil$
- + Each value gets assigned a binary number, e.g. $\textit{v}_1 \rightarrow 00, \textit{v}_2 \rightarrow 01, \textit{v}_3 \rightarrow 10$
- Inadmissible values must be excluded, e.g.: $x \in \{v_1, v_2, v_3\}$ requires $(\overline{b_0^x} \vee \overline{b_1^x})$
- · Encoding of constraints can become complicated

Recap

Elementary Encodings

- Tseitin Transformation
 - · Tseitin encoding allows to carry over structure to CNF
 - · Formula size linear in the number of subformulas (of bounded arity)
- · Cardinality Constraints
 - · Size of encoding vs. Complexity of consistency
 - · Choice of encoding matters
- Finite Domain Encodings
 - · One-hot encoding vs. Log encoding
 - · One-hot often simpler w.r.t. interaction between encodings