

Practical SAT Solving

Lecture 3

Markus Iser, Dominik Schreiber, Tomáš Balyo | April 29, 2024

www.kit.edu

Overview

Recap. Lecture 2

- Tractable Subclasses
- · Constraint Encodings and their Properties

Overview

Recap. Lecture 2

- Tractable Subclasses
- · Constraint Encodings and their Properties

Today's Topics: Elementary SAT Algorithms

- · Local Search
- · Resolution
- DP Algorithm
- DPLL Algorithm

Minimize the Number of Unsatisfied Clauses

Start with a random complete variable assignment α :

Repeatedly flip variables in α to decrease the number of unsatisfied clauses:

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

· Which variable should be flipped next?

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

- · Which variable should be flipped next?
 - · select variable from an unsatisfied clause
 - · select variable that maximizes the number of satisfied clauses
- · How to avoid getting stuck in local minima?

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

- · Which variable should be flipped next?
 - · select variable from an unsatisfied clause
 - · select variable that maximizes the number of satisfied clauses
- · How to avoid getting stuck in local minima?
 - randomization

Classic SLS Algorithms

GSAT (Selman et al., 1992)	
Greedy local search algorithm	Algorithm 1: GSAT Input: ClauseSet S Output: Assignment α , or Nothing 1 for $i = 1$ to MAX_TRIES do 2 α = random-assignment to variables in S 3 for $j = 1$ to MAX_FLIPS do 4 if α satisfies all clauses in S then return α 5 x = variable that produces least number of unsatisfied clauses when flipped 6 flip x

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

Classic SLS Algorithms

WalkSAT (Selman et al., 199	3)		
Variant of GSAT	Algorithm 2: WalkSAT(S)		
Try to avoid local minima by introducing random noise.	Algorithm 2: WalkSAT(S)1 for $i = 1$ to MAX_TRIES do2 α = random-assignment to variables in S33for $j = 1$ to MAX_FLIPS do4456667899		
	9 return Nothing // no solution found		

SLS: Important Notions

Consider a flip taking α to α'

- **breakcount** number of clauses satisfied in α , but not satisfied in α'
- **makecount** number of clauses not satisfied in α , but satisfied in α'
- **diffscore** # unsatisfied clauses in α # unsatisfied clauses in α'

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

SLS: Important Notions

Consider a flip taking α to α'

- **breakcount** number of clauses satisfied in α , but not satisfied in α'
- **makecount** number of clauses not satisfied in α , but satisfied in α'
- **diffscore** # unsatisfied clauses in α # unsatisfied clauses in α'

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

- **GSAT** select variable with highest diffscore
- WalkSAT select variable with minimal breakcount

Legacy of SLS

- · Extremely successful and popular in early days of SAT
 - · SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - · for example, state of the art engine for automated planning in the 90s

Legacy of SLS

- · Extremely successful and popular in early days of SAT
 - · SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - · for example, state of the art engine for automated planning in the 90s
- · Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
 - Faster, more reliable, and complete!

Legacy of SLS

- · Extremely successful and popular in early days of SAT
 - · SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - · for example, state of the art engine for automated planning in the 90s
- · Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
 - Faster, more reliable, and complete!
- · Still useful as a component in more complex solvers
 - · Part of (parallel) algorithm portfolios
 - · Control branching heuristics in complete search algorithms
 - · Detection of autarkies in formula simplification algorithms
 - · In combination with complete solvers for optimization problems (e.g., MaxSAT)

Recap

Elementary Algorithms

- Local Search
 - Examples: GSAT, WalkSAT
 - Terminology: breakcount, makecount, diffscore

Recap

Elementary Algorithms

- Local Search
 - · Examples: GSAT, WalkSAT
 - Terminology: breakcount, makecount, diffscore

Next Up

Resolution

The Resolution Rule

$$\frac{P_1 \cup \{x\}, \quad P_2 \cup \{\neg x\}}{P_1 \cup P_2}$$

Resolution is a logical inference rule to infer a conclusion (resolvent) from given premises (input clauses).

Example (Resolution) $\{x_1, x_3, \neg x_7\}, \{\neg x_1, x_2\} \vdash \{x_3, \neg x_7, x_2\}$ $\{x_4, x_5\}, \{\neg x_5\} \vdash \{x_4\}$ $\{x_1, x_2\}, \{\neg x_1, \neg x_2\} \vdash \{x_1, \neg x_1\}$ $\{x_1\}, \{\neg x_1\} \vdash \{\}$ (Empty Clause)

Theorem: Resolution is Sound

Given a CNF formula F with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let
$$C_1 := \{x\} \cup P_1$$
 and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Any satisfying assignment ϕ of *F* is also a satisfying assignment of *D*: Since ϕ satisfies both *C*₁ and *C*₂, it necessarily satisfies at least one literal in *D*. If ϕ satisfies *x* then it satisfies some literal in *P*₂. Otherwise, if ϕ satisfies $\neg x$ then it satisfies some literal in *P*₁.

Theorem: Resolution is Sound

Given a CNF formula *F* with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let
$$C_1 := \{x\} \cup P_1$$
 and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Any satisfying assignment ϕ of F is also a satisfying assignment of D: Since ϕ satisfies both C_1 and C_2 , it necessarily satisfies at least one literal in D. If ϕ satisfies x then it satisfies some literal in P_2 . Otherwise, if ϕ satisfies $\neg x$ then it satisfies some literal in P_1 .

```
Equivalence: F \vdash F \land D \implies F \land D \models F
```

Since D does not introduce new variables, $F \wedge D$ can not have more satisfying assignments than F.

Resolution is Sound and Refutation Complete

- If we manage to infer the empty clause from a CNF formula *F*, then *F* is unsatisfiable. (sound)
- If F is unsatisfiable, then there exists a refutation by resolution. (complete)
- Not all possible consequences of F can be derived by resolution. ("only" refutation complete)

Resolution Proof

A resolution proof for *F* is a sequence of clauses $(C_1, C_2, ..., C_{k-1}, C_k = \emptyset)$ where each C_i is either an original clause of *F* or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$F = \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}$$

(Formula) (Refutation)

Resolution is Sound and Refutation Complete

- If we manage to infer the empty clause from a CNF formula *F*, then *F* is unsatisfiable. (sound)
- If F is unsatisfiable, then there exists a refutation by resolution. (complete)
- Not all possible consequences of F can be derived by resolution. ("only" refutation complete)

Resolution Proof

A resolution proof for *F* is a sequence of clauses $(C_1, C_2, ..., C_{k-1}, C_k = \emptyset)$ where each C_i is either an original clause of *F* or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$\begin{split} & \mathcal{F} = \! \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\} & (\text{Formula}) \\ & \equiv \! \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}, \{x_2\}, \{\neg x_2\}, \{\} & (\text{Refutation}) \end{split}$$

Saturation Algorithm

Properties

- sound and complete always terminates and answers correctly
- exponential time and space complexity

Algorithm 3: Saturation AlgorithmInput: CNF formula FOutput: {SAT, UNSAT}while true do2R := resolveAll(F)3if $R \cap F \neq R$ then $F := F \cup R$

- 4 else break
- 5 if $\bot \in F$ then return UNSAT
- 6 else return SAT

Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e. has size one.

Example (Unit Resolution)

 $\mathsf{R}((x_1 \lor x_7 \lor \neg x_2 \lor x_4), (x_2)) = (x_1 \lor x_7 \lor x_4)$

Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e. has size one.

Example (Unit Resolution)

$$\mathsf{R}((x_1 \lor x_7 \lor \neg x_2 \lor x_4), (x_2)) = (x_1 \lor x_7 \lor x_4)$$

Unit Propagation

Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)

Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

$$\{x_1, x_2, x_3\}, \{x_1, \neg x_2\}, \{\neg x_1\} \vdash_1 \{\neg x_2\}, \{x_3\}$$

Recap

Elementary Algorithms

- Local Search
 - · Examples: GSAT, WalkSAT
 - · Terminology: breakcount, makecount, diffscore
- Resolution
 - · Soundness and Completeness
 - Saturation Algorithm (Exponential Complexity)
 - Unit Propagation

Recap

Elementary Algorithms

- Local Search
 - · Examples: GSAT, WalkSAT
 - · Terminology: breakcount, makecount, diffscore
- Resolution
 - · Soundness and Completeness
 - · Saturation Algorithm (Exponential Complexity)
 - · Unit Propagation

Next Up

Davis Putnam (DP) Algorithm (Improving upon saturation-based resolution)

Davis-Putnam Algorithm (Davis & Putnam, 1960)

Presented in 1960 as a SAT procedure for first-order logic.

Deduction Rules of DP Algorithm

- Unit Resolution: If there is a unit clause $C = {\overline{x}} \in F$, simplify all other clauses containing x
- Pure Literal Elimination: If a literal x never occurs negated in F, add clause {x} to F
- Case Splitting: Put *F* in the form (A ∨ x) ∧ (B ∨ ¬x) ∧ R, where A, B, and R are clause sets free of x. Replace *F* by the clausification of (A ∨ B) ∧ R

Apply above deduction rules (prioritizing rules 1 and 2) until one of the following situations occurs:

- $\bullet \ \textit{\textbf{F}} = \emptyset \quad \rightarrow \mathsf{SAT}$
- $\emptyset \in F \rightarrow \mathsf{UNSAT}$

$$F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$$
 (Split by x)

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x)

 $A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \quad B = \{\{y, u\}, \{\neg y, u\}\} \quad R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \quad ((A \lor B) \land R) \land R) \in \{y, \neg z, \neg u\}\}$

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x)

 $A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \quad B = \{\{y, u\}, \{\neg y, u\}\} \quad R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \quad ((A \lor B) \land R) \land R) \in \{y, \neg z, \neg u\}\}$

 $F_1 = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ (Split by y)

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} & \text{(Split by } x) \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} & B &= \{\{y, u\}, \{\neg y, u\}\} & R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & \text{(Split by } y) \\ A_1 &= \{\{\neg z, u\}\} & B_1 &= \{\{\neg z, u\}\} & R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A_1 \lor B_1) \land R_1) \\ \end{split}$$

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} & (\text{Split by } x) \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} & B &= \{\{y, u\}, \{\neg y, u\}\} & R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by y) \\ A_1 &= \{\{\neg z, u\}\} & B_1 &= \{\{\neg z, u\}\} & R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A_1 \lor B_1) \land R_1) \\ F_2 &= \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by z) \end{split}$$

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} & \text{(Split by } x) \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} & B &= \{\{y, u\}, \{\neg y, u\}\} & R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & \text{(Split by } y) \\ A_1 &= \{\{\neg z, u\}\} & B_1 &= \{\{\neg z, u\}\} & R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A_1 \lor B_1) \land R_1) \\ F_2 &= \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & \text{(Split by } z) \\ A_2 &= \{\{v\}, \{\neg v\}\} & B_2 &= \{\{u\}, \{\neg u\}\} & R_2 &= \{\} & ((A_2 \lor B_2) \land R_2) \\ \end{split}$$

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} & \text{(Split by } x) \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} & B &= \{\{y, u\}, \{\neg y, u\}\} & R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by y) \\ A_1 &= \{\{\neg z, u\}\} & B_1 &= \{\{\neg z, u\}\} & R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A_1 \lor B_1) \land R_1) \\ F_2 &= \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by z) \\ A_2 &= \{\{v\}, \{\neg v\}\} & B_2 &= \{\{u\}, \{\neg u\}\} & R_2 &= \{\} & ((A_2 \lor B_2) \land R_2) \\ F_3 &= \{\{u, v\}, \{u, \neg v\}, \{\neg u, v\}, \{\neg u, \neg v\}\} & (Split by u) \\ \end{split}$$

$F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$	(Split by x)
$A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} B = \{\{y, u\}, \{\neg y, u\}\} R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	$\{(A \lor B) \land R\}$
$F_{1} = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	(Split by y)
$A_1 = \{\{\neg z, u\}\} B_1 = \{\{\neg z, u\}\} B_1 = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	$((A_1 \lor B_1) \land R_1)$
$F_2 = \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	(Split by z)
$A_2 = \{\{v\}, \{\neg v\}\} B_2 = \{\{u\}, \{\neg u\}\} B_2 = \{\}$	$((A_2 \lor B_2) \land R_2)$
$F_3 = \{\{u, v\}, \{u, \neg v\}, \{\neg u, v\}, \{\neg u, \neg v\}\}$	(Split by <i>u</i>)
$A_3 = \{\{v\}, \{\neg v\}\} B_3 = \{\{v\}, \{\neg v\}\} B_3 = \{\}$	$((A_3 \lor B_3) \land R_3)$

$F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$	(Split by x)
$A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} B = \{\{y, u\}, \{\neg y, u\}\} R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	$\{((A \lor B) \land R)$
$F_{1} = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	(Split by y)
$A_1 = \{\{\neg z, u\}\} B_1 = \{\{\neg z, u\}\} B_1 = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	$((A_1 \lor B_1) \land R_1)$
$F_2 = \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	(Split by z)
$A_2 = \{\{v\}, \{\neg v\}\} B_2 = \{\{u\}, \{\neg u\}\} B_2 = \{\}$	$((A_2 \lor B_2) \land R_2)$
$F_3 = \{\{u, v\}, \{u, \neg v\}, \{\neg u, v\}, \{\neg u, \neg v\}\}$	(Split by <i>u</i>)
$A_3 = \{\{v\}, \{\neg v\}\} B_3 = \{\{v\}, \{\neg v\}\} B_3 = \{\}$	$((A_3 \lor B_3) \land R_3)$
$F_4 = \{\{v\}, \{\neg v\}\} \vdash_1 \{\emptyset\}$	(Unit Resolution)

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same ≺-maximal variable
- Bucket Elimination: process buckets in decreasing ≺-order
 - · resolve all clauses in bucket
 - · put resolvents in fitting bucket

Example (Bucket Elimination)

 $F = \{(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{x}, \overline{y}, u)\}$

 $(x \succ y \succ z \succ u \succ v)$

Variable	Bucket
X	$(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (\overline{x}, \overline{y}, u)$
у	
Ζ	$(z, v), (z, \overline{v}), (\overline{z}, \overline{u})$
u	
V	

$F = \{(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{x}, \overline{y}, u)\}$	$(x \succ y \succ z \succ u \succ v)$
--	---------------------------------------

Variable	Bucket
X	processed
У	$(y,\overline{z},u),(\overline{y},\overline{z},u)$
z	$(z, v), (z, \overline{v}), (\overline{z}, \overline{u})$
u	
V	

$F = \{(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{x}, \overline{y}, u)\}$	$(x \succ y \succ z \succ u \succ v)$
--	---------------------------------------

Variable	Bucket
X	processed
у	processed
Z	$(z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{z}, u)$
и	
V	

$F = \{(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{x}, \overline{y}, u)\}$	$(x \succ y \succ z \succ u \succ v)$
--	---------------------------------------

Variable	Bucket
X	processed
у	processed
Z	processed
u	$(\overline{u}, v), (u, v), (\overline{u}, \overline{v}), (u, \overline{v})$
V	

$F = \{(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (z, v), (z, \overline{v}), (\overline{z}, \overline{u}), (\overline{x}, \overline{y}, u)\}$	$(x \succ y \succ z \succ u \succ v)$
--	---------------------------------------

Variable	Bucket
X	processed
у	processed
Ζ	processed
и	processed
V	$(v), (\overline{v})$

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

-from Davis' and Putnam's Paper

· Does DP improve on saturation's average time complexity?

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
 - \Rightarrow yes if we split over the right variables

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
 - \Rightarrow yes if we split over the right variables
- · Does DP avoid saturation's exponential space complexity?

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
 - \Rightarrow yes if we split over the right variables
- Does DP avoid saturation's exponential space complexity?

 \Rightarrow no — quadratic blowup in size for eliminating one variable

DPLL Algorithm (Davis et al., 1962)

Davis Putnam Logemann Loveland (DPLL) Algorithm

- DPLL is a backtracking search over partial variable assignments.
- Case splitting over a variable *x* branches the search over two cases *x* and $\neg x$: resulting in the simplified formulas $F_{|x=true}$ and $F_{|x=false}$
- Simplification rules:
 - Unit Propagation: If $\{I\} \in F$, I must be set to true.
 - Pure Literal Elimination: If x occurs only positively (or only negatively), it may be fixed to the respective value.

DPLL Algorithm

ato ut vuitle	Algorithm 4: DPLL(ClauseSet S)	
simplifications	¹ while S contains a unit clause $\{L\}$ do	
Simplifications	2 delete from <i>S</i> clauses containing <i>L</i>	<pre>// unit-subsumption</pre>
recurse on	delete $\neg L$ from all clauses in S	<pre>// unit-resolution</pre>
subformulas obtained	4 if $\emptyset \in S$ then return false	<pre>// empty clause</pre>
by case-splitting		
	6 delete from S all clauses containing L // pur	e literal elimination
stop if satisfying	7 if $S = \emptyset$ then return true	// no clauses
assignment found or	8 choose a literal L occurring in S	<pre>// case-splitting</pre>
all branches are	${\mathfrak s}$ if $\mathit{DPLL}(S\cup\{\{L\}\})$ then return true	// first branch
unsatisfiable	10 else if $\mathit{DPLL}(S \cup \{\{\neg L\}\})$ then return true	<pre>// second branch</pre>
	11 else return false	

Karlsruher Institut für Technologie

DPLL Algorithm with Trail

	Algorithm 5: trailDPLL(ClauseSet S, PartialAssignment α)		
(S, α) is the clause	1 while (S, α) contains a unit clause $\{L\}$ do		
set S as "seen" under	2 add $\{L = 1\}$ to α	<pre>// Unit Propagation</pre>	
partial assignment α	3 if a literal is assigned both 0 and 1 in α then		
No explicit pure literal	4 return false	// Conflict	
elimination (it is too	5 if all literals assigned then		
slow for the benefit it	6 return true	<pre>// Assignment found</pre>	
provides)	au choose a literal L not assigned in $lpha$ occurring in S	<pre>// Case Splitting</pre>	
, ,	8 if <i>trailDPLL(S,</i> $lpha \cup \{\{L = 1\}\})$ then		
trailDPLL() leads to	9 return true	// first branch	
efficient iterative	10 else if trailDPLL(S, $\alpha \cup \{\{L = 0\}\})$ then		
DPLL implementation	11 return true	<pre>// second branch</pre>	
	12 else return false		

DPLL Algorithm

Properties

- · DPLL always terminates
 - · Each recursion eliminates one variable
 - Worst case: binary tree search of depth |V|
- · DPLL is sound and complete
 - + If clause set S is SAT, we eventually find a satisfying α
 - If clause set *S* is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)
- Space complexity: linear!
 - systematic search avoids blowup of "unfocused" DP

Recap

Elementary Algorithms

- Local Search
 - · Examples: GSAT, WalkSAT
 - · Terminology: breakcount, makecount, diffscore
- Resolution
 - · Soundness and Completeness
 - · Saturation Algorithm (Exponential Complexity)
- DP Algorithm
 - Systematized Resolution
 - Improved Average Time Complexity
- DPLL Algorithm
 - Case Splitting and Unit Propagation
 - Linear Space Complexity

Next Steps

Coming Lectures

- · How can we implement unit propagation efficiently?
- Which literal *L* to use for case splitting?
- · How can we efficiently implement the case splitting step?