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Recap. Lecture 2
• Tractable Subclasses

• Constraint Encodings and their Properties

Today’s Topics: Elementary SAT Algorithms
• Local Search

• Resolution

• DP Algorithm

• DPLL Algorithm
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Minimize the Number of Unsatisfied Clauses
Start with a random complete variable assignment α:

00 1 10 01 0 1 1 10 0 01

Repeatedly flip variables in α to decrease the number of unsatisfied clauses:

00 1 10 00 0 1 1 10 0 01
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Properties of SLS Algorithms
Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:
• Which variable should be flipped next?

• select variable from an unsatisfied clause

• select variable that maximizes the number of satisfied clauses

• How to avoid getting stuck in local minima?

• randomization
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GSAT (Selman et al., 1992)
Greedy local search algorithm Algorithm 1: GSAT

Input: ClauseSet S
Output: Assignment α, or Nothing

1 for i = 1 to MAX_TRIES do
2 α = random-assignment to variables in S
3 for j = 1 to MAX_FLIPS do
4 if α satisfies all clauses in S then return α
5 x = variable that produces least number of unsatisfied

clauses when flipped
6 flip x
7 return Nothing // no solution found
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WalkSAT (Selman et al., 1993)
Variant of GSAT

Try to avoid local minima by
introducing random noise.

Algorithm 2: WalkSAT(S)

1 for i = 1 to MAX_TRIES do
2 α = random-assignment to variables in S
3 for j = 1 to MAX_FLIPS do
4 if α satisfies all clauses in S then return α
5 C = random unsatisfied clause in S
6 if by flipping an x ∈ C no new unsatisfied clauses

emerges then flip x
7 else with probability p flip an x ∈ C at random
8 otherwise, flip a variable that changes the least number

of clauses from satisfied to unsatisfied
9 return Nothing // no solution found
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https://web2.qatar.cmu.edu/~gdicaro/15281/additional/dimacs93-walksat.pdf


Consider a flip taking α to α′

breakcount number of clauses satisfied in α, but not satisfied in α′

makecount number of clauses not satisfied in α, but satisfied in α′

diffscore # unsatisfied clauses in α − # unsatisfied clauses in α′

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

GSAT select variable with highest diffscore

WalkSAT select variable with minimal breakcount
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Legacy of SLS
• Extremely successful and popular in early days of SAT

• SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL

• for example, state of the art engine for automated planning in the 90s

• Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
• Faster, more reliable, and complete!

• Still useful as a component in more complex solvers
• Part of (parallel) algorithm portfolios

• Control branching heuristics in complete search algorithms

• Detection of autarkies in formula simplification algorithms

• In combination with complete solvers for optimization problems (e.g., MaxSAT)
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Elementary Algorithms
• Local Search

• Examples: GSAT, WalkSAT

• Terminology: breakcount, makecount, diffscore

Next Up
• Resolution
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The Resolution Rule
P1 ∪ {x}, P2 ∪ {¬x}

P1 ∪ P2

Resolution is a logical inference rule to infer a conclusion (resolvent) from given premises (input clauses).

Example (Resolution)
{x1, x3,¬x7}, {¬x1, x2} ⊢ {x3,¬x7, x2}

{x4, x5}, {¬x5} ⊢ {x4} (Fact)

{x1, x2}, {¬x1,¬x2} ⊢ {x1,¬x1} (Tautological Resolvent)

{x1}, {¬x1} ⊢ {} (Empty Clause)
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Theorem: Resolution is Sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D

Any satisfying assignment ϕ of F is also a satisfying assignment of D: Since ϕ satisfies both C1 and C2, it
necessarily satisfies at least one literal in D. If ϕ satisfies x then it satisfies some literal in P2. Otherwise, if ϕ
satisfies ¬x then it satisfies some literal in P1.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F

Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .
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Resolution is Sound and Refutation Complete
• If we manage to infer the empty clause from a CNF formula F , then F is unsatisfiable. (sound)

• If F is unsatisfiable, then there exists a refutation by resolution. (complete)

• Not all possible consequences of F can be derived by resolution. (“only” refutation complete)

Resolution Proof
A resolution proof for F is a sequence of clauses ⟨C1,C2, . . . ,Ck−1,Ck = ∅⟩ where each Ci is either an original
clause of F or a resolvent of two earlier clauses.

Example (Resolution Proof)
F ={x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2} (Formula)

≡{x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2}, {x2}, {¬x2}, {}

(Refutation)
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Properties

• sound and complete –
always terminates and
answers correctly

• exponential time and space
complexity

Algorithm 3: Saturation Algorithm
Input: CNF formula F
Output: {SAT, UNSAT}

1 while true do
2 R := resolveAll(F)
3 if R ∩ F ̸= R then F := F ∪ R
4 else break
5 if ⊥ ∈ F then return UNSAT
6 else return SAT
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Unit Resolution
Resolution where at least one of the resolved clauses is a unit clause, i.e. has size one.

Example (Unit Resolution)
R((x1 ∨ x7 ∨ ¬x2 ∨ x4), (x2)) = (x1 ∨ x7 ∨ x4)

Unit Propagation
Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)
Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

{x1, x2, x3}, {x1,¬x2}, {¬x1} ⊢1 {¬x2}, {x3}
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Elementary Algorithms
• Local Search

• Examples: GSAT, WalkSAT
• Terminology: breakcount, makecount, diffscore

• Resolution
• Soundness and Completeness
• Saturation Algorithm (Exponential Complexity)
• Unit Propagation

Next Up
Davis Putnam (DP) Algorithm (Improving upon saturation-based resolution)
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Presented in 1960 as a SAT procedure for first-order logic.

Deduction Rules of DP Algorithm
• Unit Resolution: If there is a unit clause C = {x} ∈ F , simplify all other clauses containing x

• Pure Literal Elimination: If a literal x never occurs negated in F , add clause {x} to F

• Case Splitting: Put F in the form (A ∨ x) ∧ (B ∨ ¬x) ∧ R, where A, B, and R are clause sets free of x .
Replace F by the clausification of (A ∨ B) ∧ R

Apply above deduction rules (prioritizing rules 1 and 2) until one of the following situations occurs:

• F = ∅ → SAT

• ∅ ∈ F → UNSAT
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Davis-Putnam Algorithm (Davis & Putnam, 1960)

http://doi.acm.org/10.1145/321033.321034


Example (DP Algorithm)
F = {{x , y ,¬z, u}, {¬x , y , u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y , u}} (Split by x)

A = {{y ,¬z, u}, {¬y ,¬z}} B = {{y , u}, {¬y , u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z, u}, {¬y ,¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y )

A1 = {{¬z, u}} B1 = {{¬z, u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)
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F1 = {{y ,¬z, u}, {¬y ,¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y )

A1 = {{¬z, u}} B1 = {{¬z, u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/27 April 29, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Davis-Putnam Algorithm



Example (DP Algorithm)
F = {{x , y ,¬z, u}, {¬x , y , u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y , u}} (Split by x)

A = {{y ,¬z, u}, {¬y ,¬z}} B = {{y , u}, {¬y , u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z, u}, {¬y ,¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y )

A1 = {{¬z, u}} B1 = {{¬z, u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z, u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/27 April 29, 2024 Markus Iser, Dominik Schreiber, Tomáš Balyo: SAT Solving Algorithm Engineering

Davis-Putnam Algorithm



Bucket Elimination
• Fix order ≺ on variables.

• Bucket: set of clauses with same ≺-maximal variable

• Bucket Elimination: process buckets in decreasing ≺-order
• resolve all clauses in bucket

• put resolvents in fitting bucket
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Example (Bucket Elimination)
F = {(x , y , z, u), (x , y , u), (x , y , z), (z, v), (z, v), (z, u), (x , y , u)} (x ≻ y ≻ z ≻ u ≻ v )

Variable Bucket

x (x , y , z, u), (x , y , u), (x , y , z), (x , y , u)

y

z (z, v), (z, v), (z, u)

u

v
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F = {(x , y , z, u), (x , y , u), (x , y , z), (z, v), (z, v), (z, u), (x , y , u)} (x ≻ y ≻ z ≻ u ≻ v )

Variable Bucket

x processed

y (y , z, u), (y , z, u)

z (z, v), (z, v), (z, u)

u

v
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Example (Bucket Elimination)
F = {(x , y , z, u), (x , y , u), (x , y , z), (z, v), (z, v), (z, u), (x , y , u)} (x ≻ y ≻ z ≻ u ≻ v )

Variable Bucket

x processed

y processed

z processed

u (u, v), (u, v), (u, v), (u, v)

v
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Example (Bucket Elimination)
F = {(x , y , z, u), (x , y , u), (x , y , z), (z, v), (z, v), (z, u), (x , y , u)} (x ≻ y ≻ z ≻ u ≻ v )

Variable Bucket

x processed

y processed

z processed

u processed

v (v), (v)
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The superiority of the present procedure over those previously available is indicated in part by the fact that a
formula on which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without
obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

—from Davis’ and Putnam’s Paper

• Does DP improve on saturation’s average time complexity?

⇒ yes — if we split over the right variables

• Does DP avoid saturation’s exponential space complexity?

⇒ no — quadratic blowup in size for eliminating one variable
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Davis Putnam Logemann Loveland (DPLL) Algorithm
• DPLL is a backtracking search over partial variable assignments.

• Case splitting over a variable x branches the search over two cases x and ¬x :
resulting in the simplified formulas F|x=true and F|x=false

• Simplification rules:
• Unit Propagation: If {l} ∈ F , l must be set to true.

• Pure Literal Elimination: If x occurs only positively (or only negatively), it may be fixed to the respective value.
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DPLL Algorithm (Davis et al., 1962)

http://doi.acm.org/10.1145/368273.368557


start with
simplifications

recurse on
subformulas obtained
by case-splitting

stop if satisfying
assignment found or
all branches are
unsatisfiable

Algorithm 4: DPLL(ClauseSet S)

1 while S contains a unit clause {L} do
2 delete from S clauses containing L // unit-subsumption

3 delete ¬L from all clauses in S // unit-resolution

4 if ∅ ∈ S then return false // empty clause

5 while S contains a pure literal L do
6 delete from S all clauses containing L // pure literal elimination

7 if S = ∅ then return true // no clauses

8 choose a literal L occurring in S // case-splitting

9 if DPLL(S ∪ {{L}}) then return true // first branch

10 else if DPLL(S ∪ {{¬L}}) then return true // second branch

11 else return false
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(S, α) is the clause
set S as “seen” under
partial assignment α

No explicit pure literal
elimination (it is too
slow for the benefit it
provides)

trailDPLL() leads to
efficient iterative
DPLL implementation

Algorithm 5: trailDPLL(ClauseSet S, PartialAssignment α)

1 while (S, α) contains a unit clause {L} do
2 add {L = 1} to α // Unit Propagation

3 if a literal is assigned both 0 and 1 in α then
4 return false // Conflict

5 if all literals assigned then
6 return true // Assignment found

7 choose a literal L not assigned in α occurring in S // Case Splitting

8 if trailDPLL(S, α ∪ {{L = 1}}) then
9 return true // first branch

10 else if trailDPLL(S, α ∪ {{L = 0}}) then
11 return true // second branch

12 else return false
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Properties
• DPLL always terminates

• Each recursion eliminates one variable

• Worst case: binary tree search of depth |V |

• DPLL is sound and complete
• If clause set S is SAT, we eventually find a satisfying α

• If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection
still matters!)

• Space complexity: linear!
— systematic search avoids blowup of “unfocused” DP
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Elementary Algorithms
• Local Search

• Examples: GSAT, WalkSAT
• Terminology: breakcount, makecount, diffscore

• Resolution
• Soundness and Completeness
• Saturation Algorithm (Exponential Complexity)

• DP Algorithm
• Systematized Resolution
• Improved Average Time Complexity

• DPLL Algorithm
• Case Splitting and Unit Propagation
• Linear Space Complexity
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Coming Lectures
• How can we implement unit propagation efficiently?

• Which literal L to use for case splitting?

• How can we efficiently implement the case splitting step?
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