Practical SAT Solving

Lecture 3

Markus Iser, Dominik Schreiber, Tomáš Balyo | April 29, 2024

Overview

Recap. Lecture 2

- Tractable Subclasses
- Constraint Encodings and their Properties

Overview

Recap. Lecture 2

- Tractable Subclasses
- Constraint Encodings and their Properties

Today's Topics: Elementary SAT Algorithms

- Local Search
- Resolution
- DP Algorithm
- DPLL Algorithm

Stochastic Local Search (SLS)

Minimize the Number of Unsatisfied Clauses

Start with a random complete variable assignment α :

Repeatedly flip variables in α to decrease the number of unsatisfied clauses:

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!
Challenges:

- Which variable should be flipped next?

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!
Challenges:

- Which variable should be flipped next?
- select variable from an unsatisfied clause
- select variable that maximizes the number of satisfied clauses
- How to avoid getting stuck in local minima?

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!
Challenges:

- Which variable should be flipped next?
- select variable from an unsatisfied clause
- select variable that maximizes the number of satisfied clauses
- How to avoid getting stuck in local minima?
- randomization

Classic SLS Algorithms

GSAT (Selman et al., 1992)

Greedy local search algorithm

```
Algorithm 1: GSAT
Input: ClauseSet S
Output: Assignment }\alpha\mathrm{ , or Nothing
for i=1 to MAX_TRIES do
        \alpha = random-assignment to variables in S
        for j=1 to MAX_FLIPS do
            if \alpha satisfies all clauses in S then return \alpha
            x = variable that produces least number of unsatisfied
            clauses when flipped
            flip x
return Nothing // no solution found
```


SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

Classic SLS Algorithms

WalkSAT (Selman et al., 1993)

Variant of GSAT

Try to avoid local minima by introducing random noise.

```
Algorithm 2: WalkSAT(S)
for \(i=1\) to MAX_TRIES do
    \(\alpha=\) random-assignment to variables in \(S\)
    for \(j=1\) to MAX_FLIPS do
        if \(\alpha\) satisfies all clauses in \(S\) then return \(\alpha\)
            \(C=\) random unsatisfied clause in \(S\)
            if by flipping an \(x \in C\) no new unsatisfied clauses
                emerges then flip \(x\)
            else with probability \(p\) flip an \(x \in C\) at random
            otherwise, flip a variable that changes the least number
            of clauses from satisfied to unsatisfied
return Nothing
                                // no solution found
```


SLS: Important Notions

Consider a flip taking α to α^{\prime}

breakcount	number of clauses satisfied in α, but not satisfied in α^{\prime}
makecount	number of clauses not satisfied in α, but satisfied in α^{\prime}
diffscore	\# unsatisfied clauses in $\alpha-$ \# unsatisfied clauses in α^{\prime}

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

SLS: Important Notions

Consider a flip taking α to α^{\prime}

breakcount	number of clauses satisfied in α, but not satisfied in α^{\prime}
makecount	number of clauses not satisfied in α, but satisfied in α^{\prime}
diffscore	\# unsatisfied clauses in $\alpha-\#$ unsatisfied clauses in α^{\prime}

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

GSAT select variable with highest diffscore
WalkSAT select variable with minimal breakcount

Stochastic Local Search (SLS)

Legacy of SLS

- Extremely successful and popular in early days of SAT
- SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
- for example, state of the art engine for automated planning in the 90s

Stochastic Local Search (SLS)

Legacy of SLS

- Extremely successful and popular in early days of SAT
- SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
- for example, state of the art engine for automated planning in the 90s
- Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
- Faster, more reliable, and complete!

Stochastic Local Search (SLS)

Legacy of SLS

- Extremely successful and popular in early days of SAT
- SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
- for example, state of the art engine for automated planning in the 90s
- Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
- Faster, more reliable, and complete!
- Still useful as a component in more complex solvers
- Part of (parallel) algorithm portfolios
- Control branching heuristics in complete search algorithms
- Detection of autarkies in formula simplification algorithms
- In combination with complete solvers for optimization problems (e.g., MaxSAT)

Recap

Elementary Algorithms

- Local Search
- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Recap

Elementary Algorithms

- Local Search
- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Next Up

- Resolution

Resolution

The Resolution Rule

$$
\frac{P_{1} \cup\{x\}, \quad P_{2} \cup\{\neg x\}}{P_{1} \cup P_{2}}
$$

Resolution is a logical inference rule to infer a conclusion (resolvent) from given premises (input clauses).

Example (Resolution)

$$
\begin{array}{rll}
\left\{x_{1}, x_{3}, \neg x_{7}\right\},\left\{\neg x_{1}, x_{2}\right\} & \vdash\left\{x_{3}, \neg x_{7}, x_{2}\right\} \\
\left\{x_{4}, x_{5}\right\},\left\{\neg x_{5}\right\} & \vdash & \left\{x_{4}\right\} \tag{Fact}\\
\left\{x_{1}, x_{2}\right\},\left\{\neg x_{1}, \neg x_{2}\right\} & \vdash\left\{x_{1}, \neg x_{1}\right\} \\
\left\{x_{1}\right\},\left\{\neg x_{1}\right\} & \vdash\}
\end{array}
$$

Resolution

Theorem: Resolution is Sound

Given a CNF formula F with two resolvable clauses $C_{1}, C_{2} \subseteq F$ with resolvent $\mathrm{R}\left(C_{1}, C_{2}\right)$, the following holds:

$$
F \equiv F \wedge R\left(C_{1}, C_{2}\right)
$$

Proof

Let $C_{1}:=\{x\} \cup P_{1}$ and $C_{2}:=\{\neg x\} \cup P_{2}$ such that $R\left(C_{1}, C_{2}\right)=P_{1} \cup P_{2}=: D$.
Soundness: $F \vdash F \wedge D \Longrightarrow F \mid F \wedge D$
Any satisfying assignment ϕ of F is also a satisfying assignment of D : Since ϕ satisfies both C_{1} and C_{2}, it necessarily satisfies at least one literal in D. If ϕ satisfies x then it satisfies some literal in P_{2}. Otherwise, if ϕ satisfies $\neg x$ then it satisfies some literal in P_{1}.

Resolution

Theorem: Resolution is Sound

Given a CNF formula F with two resolvable clauses $C_{1}, C_{2} \subseteq F$ with resolvent $\mathrm{R}\left(C_{1}, C_{2}\right)$, the following holds:

$$
F \equiv F \wedge R\left(C_{1}, C_{2}\right)
$$

Proof

Let $C_{1}:=\{x\} \cup P_{1}$ and $C_{2}:=\{\neg x\} \cup P_{2}$ such that $\mathrm{R}\left(C_{1}, C_{2}\right)=P_{1} \cup P_{2}=: D$.
Soundness: $F \vdash F \wedge D \Longrightarrow F \models F \wedge D$
Any satisfying assignment ϕ of F is also a satisfying assignment of D : Since ϕ satisfies both C_{1} and C_{2}, it necessarily satisfies at least one literal in D. If ϕ satisfies x then it satisfies some literal in P_{2}. Otherwise, if ϕ satisfies $\neg x$ then it satisfies some literal in P_{1}.

Equivalence: $F \vdash F \wedge D \Longrightarrow F \wedge D \models F$
Since D does not introduce new variables, $F \wedge D$ can not have more satisfying assignments than F.

Resolution

Resolution is Sound and Refutation Complete

- If we manage to infer the empty clause from a CNF formula F, then F is unsatisfiable. (sound)
- If F is unsatisfiable, then there exists a refutation by resolution. (complete)
- Not all possible consequences of F can be derived by resolution. ("only" refutation complete)

Resolution Proof

A resolution proof for F is a sequence of clauses $\left\langle C_{1}, C_{2}, \ldots, C_{k-1}, C_{k}=\emptyset\right\rangle$ where each C_{i} is either an original clause of F or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$
F=\left\{x_{1}, x_{2}\right\},\left\{\neg x_{1}, x_{2}\right\},\left\{x_{1}, \neg x_{2}\right\},\left\{\neg x_{1}, \neg x_{2}\right\}
$$

Resolution

Resolution is Sound and Refutation Complete

- If we manage to infer the empty clause from a CNF formula F, then F is unsatisfiable. (sound)
- If F is unsatisfiable, then there exists a refutation by resolution. (complete)
- Not all possible consequences of F can be derived by resolution. ("only" refutation complete)

Resolution Proof

A resolution proof for F is a sequence of clauses $\left\langle C_{1}, C_{2}, \ldots, C_{k-1}, C_{k}=\emptyset\right\rangle$ where each C_{i} is either an original clause of F or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$
\begin{align*}
F & =\left\{x_{1}, x_{2}\right\},\left\{\neg x_{1}, x_{2}\right\},\left\{x_{1}, \neg x_{2}\right\},\left\{\neg x_{1}, \neg x_{2}\right\} \tag{Formula}\\
& \equiv\left\{x_{1}, x_{2}\right\},\left\{\neg x_{1}, x_{2}\right\},\left\{x_{1}, \neg x_{2}\right\},\left\{\neg x_{1}, \neg x_{2}\right\},\left\{x_{2}\right\},\left\{\neg x_{2}\right\},\{ \}
\end{align*}
$$

Saturation Algorithm

Properties

- sound and complete always terminates and answers correctly
- exponential time and space complexity

```
Algorithm 3: Saturation Algorithm
Input: CNF formula \(F\)
Output: \{SAT, UNSAT\}
1 while true do
    \(R:=\) resolveAll \((F)\)
    if \(R \cap F \neq R\) then \(F:=F \cup R\)
    else break
if \(\perp \in F\) then return UNSAT
else return SAT
```


Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e. has size one.

Example (Unit Resolution)

$$
\mathrm{R}\left(\left(x_{1} \vee x_{7} \vee \neg x_{2} \vee x_{4}\right),\left(x_{2}\right)\right)=\left(x_{1} \vee x_{7} \vee x_{4}\right)
$$

Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e. has size one.

Example (Unit Resolution)

$$
\mathrm{R}\left(\left(x_{1} \vee x_{7} \vee \neg x_{2} \vee x_{4}\right),\left(x_{2}\right)\right)=\left(x_{1} \vee x_{7} \vee x_{4}\right)
$$

Unit Propagation

Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)

Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

$$
\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, \neg x_{2}\right\},\left\{\neg x_{1}\right\} \quad \vdash_{1} \quad\left\{\neg x_{2}\right\},\left\{x_{3}\right\}
$$

Recap

Elementary Algorithms

- Local Search
- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore
- Resolution
- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)
- Unit Propagation

Recap

Elementary Algorithms

- Local Search
- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore
- Resolution
- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)
- Unit Propagation

Next Up

Davis Putnam (DP) Algorithm (Improving upon saturation-based resolution)

Davis-Putnam Algorithm (Davis \& Putnam, 1960)

Presented in 1960 as a SAT procedure for first-order logic.

Deduction Rules of DP Algorithm

- Unit Resolution: If there is a unit clause $C=\{\bar{x}\} \in F$, simplify all other clauses containing x
- Pure Literal Elimination: If a literal x never occurs negated in F, add clause $\{x\}$ to F
- Case Splitting: Put F in the form $(A \vee x) \wedge(B \vee \neg x) \wedge R$, where A, B, and R are clause sets free of x. Replace F by the clausification of $(A \vee B) \wedge R$

Apply above deduction rules (prioritizing rules 1 and 2) until one of the following situations occurs:

- $F=\emptyset \rightarrow$ SAT
- $\emptyset \in F \quad \rightarrow$ UNSAT

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
F=\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} \quad \text { (Split by } x \text {) }
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrr}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
((A \vee B) \wedge R)
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{(\text { (A } \vee \mathcal{B}) \wedge R) \\
\text { (Split by } y)
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{((A \vee B) \wedge R) \\
A_{1} & =\{\{\neg z, \neg z, u\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & B_{1}=\{\{\neg z, u\}\} & R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\}
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{((A \vee B) \wedge R) \\
A_{1} & =\{\{\neg z, \neg z, u\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & B_{1}=\{\{\neg z, u\}\} & R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\}
\end{array}
$$

$$
F_{2}=\{\{\neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\}
$$

(Split by z)

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{((A \vee B) \wedge R) \\
A_{1} & =\{\{\neg z, u\}\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & B_{1}=\{\{\neg z, u\}\} & R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{2} & =\{\{\neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & \left(\left(A_{1} \vee B_{1}\right) \wedge R_{1}\right) \\
A_{2} & =\{\{v\},\{\neg v\}\} \quad B_{2}=\{\{u\},\{\neg u\}\} \quad R_{2}=\{ \} & (\text { Split by } z) \\
\hline
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlr}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} \\
F_{1} & =\{\{y=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & ((A \vee B) \wedge R) \\
A_{1} & =\{\{\neg z, u\}\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & B_{1}=\{\{\neg z, u\}\} \\
R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & (\text { Split by } y) \\
F_{2} & =\{\{\neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & \left(\left(A_{1} \vee B_{1}\right) \wedge R_{1}\right) \\
A_{2} & =\{\{v\},\{\neg v\}\} \quad B_{2}=\{\{u\},\{\neg u\}\} \quad R_{2}=\{ \} & (\text { Split by } z) \\
F_{3} & =\{\{u, v\},\{u, \neg v\},\{\neg u, v\},\{\neg u, \neg v\}\} & \left(\left(A_{2} \vee B_{2}\right) \wedge R_{2}\right) \\
& \text { (Split by } u)
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{((A \vee B) \wedge R) \\
A_{1} & =\{\{\neg z, u\}\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & (\text { Split by } y) \\
F_{2}=\{\{\neg \neg z, u\}\} & R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & \left(\left(A_{1} \vee B_{1}\right) \wedge R_{1}\right) \\
A_{2} & =\{\{v\},\{\neg v\}\} \quad B_{2}=\{\{u\},\{\neg u\}\} \quad R_{2}=\{ \} & (\text { Split by } z) \\
F_{3} & =\{\{u, v\},\{u, \neg v\},\{\neg u, v\},\{\neg u, \neg v\}\} & \left(\left(A_{2} \vee B_{2}\right) \wedge R_{2}\right) \\
A_{3} & =\{\{v\},\{\neg v\}\} & B_{3}=\{\{v\},\{\neg v\}\} \quad R_{3}=\{ \} & (\text { Split by } u) \\
\left(\left(A_{3} \vee B_{3}\right) \wedge R_{3}\right)
\end{array}
$$

Davis-Putnam Algorithm

Example (DP Algorithm)

$$
\begin{array}{rlrl}
F & =\{\{x, y, \neg z, u\},\{\neg x, y, u\},\{x, \neg y, \neg z\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\},\{\neg x, \neg y, u\}\} & \text { (Split by } x) \\
A & =\{\{y, \neg z, u\},\{\neg y, \neg z\}\} & B=\{\{y, u\},\{\neg y, u\}\} & R=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} \\
F_{1} & =\{\{y, \neg z, u\},\{\neg y, \neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & (\text { (Split by } y) \\
A_{1} & =\{\{\neg z, u\}\} \quad B_{1}=\{\{\neg z, u\}\} & R_{1}=\{\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & \left(\left(A_{1} \vee B_{1}\right) \wedge R_{1}\right) \\
F_{2} & =\{\{\neg z, u\},\{z, v\},\{z, \neg v\},\{\neg z, \neg u\}\} & (\text { Split by }) \\
A_{2} & =\{\{v\},\{\neg v\}\} \quad B_{2}=\{\{u\},\{\neg u\}\} \quad R_{2}=\{ \} & \left(\left(A_{2} \vee B_{2}\right) \wedge R_{2}\right) \\
F_{3} & =\{\{u, v\},\{u, \neg v\},\{\neg u, v\},\{\neg u, \neg v\}\} & (\text { Split by } u) \\
A_{3} & =\{\{v\},\{\neg v\}\} \quad B_{3}=\{\{v\},\{\neg v\}\} \quad R_{3}=\{ \} & \left(\left(A_{3} \vee B_{3}\right) \wedge R_{3}\right) \\
F_{4} & =\{\{v\},\{\neg v\}\} \vdash_{1}\{\emptyset\} & & \text { (Unit Resolution) }
\end{array}
$$

DP Variant: Bucket Elimination

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same \prec-maximal variable
- Bucket Elimination: process buckets in decreasing \prec-order
- resolve all clauses in bucket
- put resolvents in fitting bucket

DP Variant: Bucket Elimination

Example (Bucket Elimination)

$$
F=\{(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{x}, \bar{y}, u)\} \quad(x \succ y \succ z \succ u \succ v)
$$

Variable	Bucket
x	$(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(\bar{x}, \bar{y}, u)$
y	
z	$(z, v),(z, \bar{v}),(\bar{z}, \bar{u})$
u	
v	

DP Variant: Bucket Elimination

Example (Bucket Elimination)

$$
F=\{(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{x}, \bar{y}, u)\} \quad(x \succ y \succ z \succ u \succ v)
$$

Variable	Bucket
x	processed
y	$(y, \bar{z}, u),(\bar{y}, \bar{z}, u)$
z	$(z, v),(z, \bar{v}),(\bar{z}, \bar{u})$
u	
v	

DP Variant: Bucket Elimination

Example (Bucket Elimination)

$$
F=\{(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{x}, \bar{y}, u)\} \quad(x \succ y \succ z \succ u \succ v)
$$

Variable	Bucket
x	processed
y	processed
z	$(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{z}, u)$
u	
v	

DP Variant: Bucket Elimination

Example (Bucket Elimination)

$$
F=\{(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{x}, \bar{y}, u)\} \quad(x \succ y \succ z \succ u \succ v)
$$

Variable	Bucket
x	processed
y	processed
z	processed
u	$(\bar{u}, v),(u, v),(\bar{u}, \bar{v}),(u, \bar{v})$
v	

DP Variant: Bucket Elimination

Example (Bucket Elimination)

$$
F=\{(x, y, \bar{z}, u),(\bar{x}, y, u),(x, \bar{y}, \bar{z}),(z, v),(z, \bar{v}),(\bar{z}, \bar{u}),(\bar{x}, \bar{y}, u)\} \quad(x \succ y \succ z \succ u \succ v)
$$

Variable	Bucket
x	processed
y	processed
z	processed
u	processed
v	$(v),(\bar{v})$

DP: Discussion

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.
-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?

DP: Discussion

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.
-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
\Rightarrow yes - if we split over the right variables

DP: Discussion

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.
-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
\Rightarrow yes - if we split over the right variables
- Does DP avoid saturation's exponential space complexity?

DP: Discussion

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.
-from Davis' and Putnam's Paper

- Does DP improve on saturation's average time complexity?
\Rightarrow yes - if we split over the right variables
- Does DP avoid saturation's exponential space complexity?
\Rightarrow no - quadratic blowup in size for eliminating one variable

DPLL Algorithm (Davis et al., 1962)

Davis Putnam Logemann Loveland (DPLL) Algorithm

- DPLL is a backtracking search over partial variable assignments.
- Case splitting over a variable x branches the search over two cases x and $\neg x$: resulting in the simplified formulas $F_{\mid x=\text { true }}$ and $F_{\mid x=\text { false }}$
- Simplification rules:
- Unit Propagation: If $\{I\} \in F, I$ must be set to true.
- Pure Literal Elimination: If x occurs only positively (or only negatively), it may be fixed to the respective value.

DPLL Algorithm

start with
simplifications
recurse on
subformulas obtained
by case-splitting
stop if satisfying
assignment found or
all branches are
unsatisfiable

```
Algorithm 4: DPLL(ClauseSet S)
while \(S\) contains a unit clause \(\{L\}\) do
        delete from \(S\) clauses containing \(L\)
        delete \(\neg L\) from all clauses in \(S\)
if \(\emptyset \in S\) then return false
while \(S\) contains a pure literal \(L\) do
delete from \(S\) all clauses containing \(L / /\) pure literal elimination
if \(S=\emptyset\) then return true // no clauses
choose a literal \(L\) occurring in \(S\) // case-splitting
if \(\operatorname{DPLL}(S \cup\{\{L\}\})\) then return true
else if \(\operatorname{DPLL}(S \cup\{\{\neg L\}\})\) then return true // second branch
else return false
```


DPLL Algorithm with Trail

(S, α) is the clause set S as "seen" under partial assignment α

No explicit pure literal elimination (it is too slow for the benefit it provides)
trailDPLL() leads to efficient iterative

DPLL implementation

```
Algorithm 5: trailDPLL(ClauseSet S, PartialAssignment \(\alpha\) )
```

Algorithm 5: trailDPLL(ClauseSet S, PartialAssignment α)
while (S, α) contains a unit clause $\{L\}$ do
while (S, α) contains a unit clause $\{L\}$ do
add $\{L=1\}$ to α // Unit Propagation
add $\{L=1\}$ to α // Unit Propagation
if a literal is assigned both 0 and 1 in α then
if a literal is assigned both 0 and 1 in α then
return false
return false
// Conflict
// Conflict
if all literals assigned then
if all literals assigned then
return true // Assignment found
return true // Assignment found
choose a literal L not assigned in α occurring in S // Case Splitting
choose a literal L not assigned in α occurring in S // Case Splitting
s if $\operatorname{trailDPLL(S,~} \alpha \cup\{\{L=1\}\})$ then
s if $\operatorname{trailDPLL(S,~} \alpha \cup\{\{L=1\}\})$ then
return true // first branch
return true // first branch
else if trailDPLL(S, $\alpha \cup\{\{L=0\}\})$ then
else if trailDPLL(S, $\alpha \cup\{\{L=0\}\})$ then
return true // second branch
return true // second branch
else return false

```
else return false
```


DPLL Algorithm

Properties

- DPLL always terminates
- Each recursion eliminates one variable
- Worst case: binary tree search of depth $|V|$
- DPLL is sound and complete
- If clause set S is SAT, we eventually find a satisfying α
- If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)
- Space complexity: linear!
- systematic search avoids blowup of "unfocused" DP

Recap

Elementary Algorithms

- Local Search
- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore
- Resolution
- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)
- DP Algorithm
- Systematized Resolution
- Improved Average Time Complexity
- DPLL Algorithm
- Case Splitting and Unit Propagation
- Linear Space Complexity

Next Steps

Coming Lectures

- How can we implement unit propagation efficiently?
- Which literal L to use for case splitting?
- How can we efficiently implement the case splitting step?

