KIT

Karlsruhe Institute of Technology

Practical SAT Solving

Lecture 9: Parallel SAT Solving
T. Balyo, M. Iser, D. Schreiber | May 13, 2024

KIT — The Research University in the Helmholtz Association

www.kit.edu

https://www.kit.edu

Outline

Parallel SAT solving approaches
® Basic search space splitting
@ Clause sharing
@ Cube&Conquer
a Portfolio solvers (without and with clause sharing)

A deep dive into Mallob
@ QOverview
@ Scalable clause sharing
@ Experiments and results

2/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

Parallel Portfolios: An analogy ﬂIT

o0 (W)
> % 713 ° 9 > %
The Assembly of Nerds 5 aT5
@ Complex and large logic puzzle 9
® n puzzle experts at your disposition 8 bl 19 3 %
> % 9|6 3| [8 > %
How do we employ and “orchestrate” our experts? 7 1] 618
o0 (@)

3/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach I: Search Space Partitioning
73689 73689 73689
OO mHg 1 OO BHg 1 OO BHg 15
9 9 49
SIS 9] [2 3LI5] [9] S 13LJ5[19
| 36 3
_%6 68 SF gl-ﬁ 6[8 5 2 6]8] 3 |
[1218 218 RIE} [
73689 7368| 73689
OO f - OO HH O0OR 15
9 9 Elfe]
351 19] [2 3II5] [9] S 135 19
36 3 3|
9|6 318 916 3 9[6 3
7 68 7 6[8 7" 6|8]
218 2[8 12[8] |
73689 7368' 73689
Q0 3 OO B H O0OR B
419 9 49
S 13LI5] 19 3_I5[19 S 13BLI5] 19
36 3 3|
[9[6] 3] 18 [9[6] 3| [§ 3
7] 1 618 7] 1 16[8] G[8
218 218 218

4/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach I: Search Space Partitioning
®® R D =~
3[9] 45 OO €] a5 OO 310 15
9 0 piljs
3N 350 SR
1 316 3
_%6 G[8 S gl-ﬁ 6[8 5 20 68 3 |
[128 218 RIE} [
g viEIm, Vg iti
Q0O St 0 OO = B OO e Wi ® Partition search space at some
3l 5L 12 3oL S s decisions
oG BINE oG 3 oG 3 = Independent subproblems
a3 d W (613 BRI
PIES PR LS |
eI 3Ot =
OO0 48 OO B B OO0O%g mis
g1) pijs
Rl B0 3510 EINEIREINE]
36 3 3
o6 RIME o6 3 5 3
d M (63 d W (613 BIS
28 I8 RIES

4/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Explicit Partitioning

1st Parallel DPLL Implementation by B6hm & Speckenmeyer (1994)
Explicit Load Balancing

Completely distributed (no leader / worker roles)

Each process receives the entire formula and a few partial assignments
Each process can be worker or balancer:

® Worker: solve or split the formula, use the partial assignments
@ Balancer: estimate workload, communicate, stop

a
@ A list of partial assignments is generated
a
a

Switch to balancer whenever worker is finished

5/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Explicit Partitioning

“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al., 1996

Centralized leader-worker architecture

® Communication only between leader and workers
@ | eader assigns partial assignments using Guiding Path

® Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
® | eader splits open nodes and assigns job to workers

@ Workers return Guiding Path when terminated by leader
® Modern features of fault tolerance, preemption of solving tasks

6/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Explicit Partitioning

Guiding Path: List of triples (variable, branch, open)

T
A
L
%\

Ty
/N

T2
<($1707), (w6, 1,0), (4,1, 1), (22,0,)> OAl
V\

7/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

SKIT

Explicit Partitioning

SATZ (Jurkowiak et al., 2001) improves PSATO

Work stealing for workload balancing

@ An idle worker requests work from the leader

® The leader splits the work of the most loaded worker
® The idle worker and most loaded worker get the parts

8/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Clause Sharing Parallel Solvers

PaSAT (Blochinger et al., 2001)
® First parallel CDCL with clause sharing

& Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004)
® First shared-memory parallel solver

® Multi-core processors started to be popular
® uses same techniques as the previous solvers (guiding path etc.)

.. and many many more similar solvers

9/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Problems with Partitioning

What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

| I—
F
z=0 r=1
I — I —
F|m:0 F|:t*1

10/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Problems with Partitioning

What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

F
Uneven splits
x=0 r=1 L .
® One subformula is trivial, the other is just as hard as F
® Ping-pong effect for workers processing trivial formulae,
F|m:0 Fl‘%:1 communication / synchronization dominates run time

10/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Problems with Partitioning

10/50

2024-05-13

What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

Uneven splits
® One subformula is trivial, the other is just as hard as F

® Ping-pong effect for workers processing trivial formulae,
Flg—1 communication / synchronization dominates run time

Bogus splits
® Both Fj,—o and Fjy— are just as hard as F
@ Divide&Conquer becomes Multiply&Surrender!

Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

@ Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

® Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

a Best performance mostly with problem-specific decision heuristics

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

@ Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice
® Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)
a Best performance mostly with problem-specific decision heuristics
@ State-of-the-art for hard combinatorial problems

@ Used to solve the “Pythagorean Triples” problem (~200TB proof)
® .. or more recently “Schur Number 5” (~2PB proof)

@ Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Parallel Portfolios: An analogy ﬂIT

oo OO

The Assembly of Nerds
- TR o
@ Complex and large logic puzzle 5 aT5
® n puzzle experts at your disposition 9
— individual mindsets, approaches, 8 5| 191 [2
strengths & weaknesses @) 976 3 3 g @,@)
— anti-social: work best if left undisturbed (G-
2[8
How do we employ and “orchestrate” our experts?
o0 oo

12/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach Il: Pure Portfolio
3689 3689 3689
OO 3] 19 4]5] OO 3] 10 45 OO 3] 19 45
419 49 4[]
S 131 15! 932 S 13 [5] 191 12 S 13 5] 191 12
[§ 3] 8] 1916 3%% 19[6] 3%%
68|] EEGE] ARG]
2[8 | 218 | [2[8]
73689 73689
4[9] 4[9]
8l 13[5] 19 8l 13[5] 19
9|6 33 10[6 33
] ird|
I286F IZSGF
63 G G[8]
OO 3119 OO 9] OO0 9]
99 415 ‘99 4 99 4[5
3[15 93 3[15 93 3l 15 93
[£](6] 3| [¢](6] 3| [¢](6] 3
7] | 16]8] 7] 1 16]8] 7] 1 16]8]
2[8 | 218 | 12[8]

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach Il: Pure Portfolio
(6] I 3689 3689 3689
OO 3 gl'g 4]5] OO 3] 10 71415 OO 3] 19 45
14196 49 4[]
S 13 932 S 13[15 2 2 S [3[4[5 2 2
[§ 3] 8] 1916 3%% 9]¢ 3%%
68|] EEGE] 713 16]8]
2[8 6l 1218 I [2[8]
73689 73689
4[9] 35 4[9]
8l 13[15[19 8l 13[5] 19
3 3
9[6] | 3 gg 39
I286F I286:|B 6
G I GIS] G8[3]
3| 9|] 9] %
@)@ o 7T OO0 1 QOO o s
3[15 93 45603 3l 15 93
[Ol¢ 3| [¢](6] 3| [¢](6] 3
73] 16]8 el 7] 1 16]8] 7] 1 16]8]
1218 128 I 2[8

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach Il: Pure Portfolio
B R o0l R
20l0 10 pijs]

EINE] o2 BB S BEs0L
G RINE oG A8 ol A8
BRI] RS RIS |
B ol RIE | RIE}
3D 3D
40 Bl 40
S B B0 S B B0
3 3
o 113 a0 3l
o M
o8 1712514 3] G[8[3]
SR e 5
Q0O ftg i OO 8 IR TrEle OO BHg e
B TRHEIG0rR o
3 __/ PEFIPET 3
[Ol¢ 3 1 715 106 3
BN RIIGIRIE0! 7T e]
I SIRROBIATIGT| RIE) I

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Ta(x)/Tp(X)
where Q is the best available sequential algorithm.

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Ta(x)/Tp(X)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
@ There is always a sequential algorithm performing at least as well
® Consequence: Not resource efficient, not scalable

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure SAT Portfolios ﬂIT

ppfolio: Winner of Parallel Track in the 2011 SAT Competition

® Just a bash script combining the best sequential solvers from 2010:
“$./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

® Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth’
— “probably the laziest and most stupid solver ever written”

15/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure SAT Portfolios ﬂIT

ppfolio: Winner of Parallel Track in the 2011 SAT Competition

® Just a bash script combining the best sequential solvers from 2010:
“$./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

® Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth’
— “probably the laziest and most stupid solver ever written”

@ Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

® Pure portfolios no longer permitted in SAT Competitions

15/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach llI+: Cooperative Portfolio
(6] I 3689 3689 3689
OO 3g|'9 4]5] OO 3] 10 71415 OO 3] 19 45
14196 49 4[]
S 13 932 S 13[15 2 2 S [3[4[5 2 2
[§ 3] 8] 1916 3%% 9]¢ 3%%
68|] EEGE] 713 16]8]
2[8 6l 1218 I [2[8]
3689 368
C:n:) 30 a5 C:ﬂ:) 3| 9] 4[5
9 S[5]]
3[5 93 315 9] 2
1016 3| 106
| 6[8] | I3[_[6]8] 9
12[8 | 12[8] (6
G I GIS] G8[3]
3| 9|] 9] 3| %
@)@ o 7T OO0 o OO0 o6
3[15 93 45603 3l 15 93
[Ol¢ 3| [¢](6] 3| [¢](6] 3
73] 16]8 el 7] 1 16]8] 7] 1 16]8]
1218 I 128 I 2[8

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach ll+: Cooperative Portfolio

16/50

2024-05-13

oo oo 00

oo@oo

oo o O

Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Approach llI+: Cooperative Portfolio

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Approach llI+: Cooperative Portfolio
(6] I 3689 3689 3689
OO 3g|'9 4]5] OO 3] 10 71415 OO 3] 19 45
14196 49 4[]
S 13 932 S 13[15 2 2 S [3[4[5 2 2
[§ 3] 8] 1916 3%% 9]¢ 3%%
68|] 7 1 16]8] 713 16]8]
2[8 6l 1218 I [2[8]
3689 368
C:n:) 30 a5 C:ﬂ:) 3| 9] 4[5
9 S[5]]
3[]5 93 35 9] [2
1016 3| 106
| 6[8] | I3[_[6]8] 9
12[8 | 12[8] (6
G I GIS] G8[3]
3| 9|] 9] 3| %
@)@ m 7T OO0 o OO0 o6
3[]5 93 45603 3115 93
[Ol¢ 3| [¢](6] 3| [¢](6] 3
73] 16]8 el 7] 1 16]8] HEEGE]
1218 I 128 I 2[8

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Cooperative Portfolio

Assembly of Nerds, enhanced

® The experts periodically gather for brief standup meetings

& Via some protocol, the experts exchange the most valuable insights gained since the last meeting
® Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:

17/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Cooperative Portfolio

Assembly of Nerds, enhanced

® The experts periodically gather for brief standup meetings

& Via some protocol, the experts exchange the most valuable insights gained since the last meeting
® Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
@ Explored branch of search space — safe to prune
@ Potential step for deriving unsatisfiability

17/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Clause Sharing Portfolios: Design Space

Portfolio considerations
@ Which sequential solvers to employ?
& How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Cadical::diversify(seed) {

solver->set(name: " ", val: seed);
itch (getDiversificationIndex % getNumOriginalbDiversifications

okay = solver->set(name: "p : val: 0); br H

: okay solver->configure("s ;
okay solver->set(name:

: okay solver->configure("un

: okay solver->set(name ondition", wval: 1);

: okay solver->set(name Lk, wval:0); bre

: okay solver->set(name 7 tint", wval

: okay solver->set(name: "c ', val: 1); 5

: okay solver->set(mame: "shuffle", wval: 1 solver->set(name:

: okay solver->set(name: g ing", wval: 0); break;

18/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Clause Sharing Portfolios: Design Space

Portfolio considerations
@ Which sequential solvers to employ?

@ How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Clause exchange considerations
@ How often to share? (immediate/eager? delayed/lazy? periodic?)
® How many clauses to share? (fixed volume? fixed quality criteria?)
@ Which clauses to share? (shortest? lowest LBD?)
@ How to implement sharing? (all-to-all? leader-worker? some communication graph?)

18/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009)

® Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, .. .

@ Eager exchange of clauses of length < 8 via lockless queues

19/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Karlsruhe Institute of Technology

Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009)

® Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, .. .

@ Eager exchange of clauses of length < 8 via lockless queues

Plingeling (Biere 2010)
@ Portfolio over Lingeling configurations (shared-memory parallelism)

® | azy exchange of information over “boss thread”

— 2010: Unit clauses only

— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length < 40, LBD < 8

@ Best parallel solver for many years

ITI Sanders

19/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

SKIT

Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
® No shared memory — communication protocols required
& Diminishing returns due to exhausted diversification of solvers

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
® No shared memory — communication protocols required
& Diminishing returns due to exhausted diversification of solvers

® Some exchange schemes are conceptually not scalable

® “Star graph”: Master process collects, serves all exported clauses
a® Naive (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

Karlsruhe Institute of Technology

Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015)
® Decentralization: No single leader node / process

& Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

ITI Sanders

21/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015)
® Decentralization: No single leader node / process
a Two-level (“hybrid”) parallelization

— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

@ Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds

® Periodic all-to-all clause exchange

ITI Sanders

21/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

HordeSat: Results

® Super-linear speedups for individual instances
= speedup > c on c cores!

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

HordeSat: Results

® Super-linear speedups for individual instances

= speedup > c on c cores!
— SAT: “NP luck” — some solver got lucky
— UNSAT: distributed memory accommodates

more clauses than any sequential solver

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

HordeSat: Results
® Super-linear speedups for individual instances \;' 200 f,f-"f: ----------
= speedup > ¢ on c cores! = £ — = 2048c.
— SAT: “NP luck” — some solver got lucky = il,'/ R 512¢.
— UNSAT: distributed memory accommodates ; il =TT ---- 128c.
. EH R
more clauses than any sequential solver § 200 17 ,/’ 32c.
® Median speedup: 3 at 16 cores, 11.5 at 512 cores & ',/ —— Lingeling
— Efficiency: 11.5/512 ~ 2.2% * f
— Deploying HordeSat is often not worth it 0 250 500 750
@ No improvement beyond ~ 500 cores Run time ¢ (s)

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

From HordeSat to Mallob

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

23/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SKIT

From HordeSat to Mallob

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob

Mallob is a platform for SAT solving (and other NP-hard problems) with:
® multi-user, on-demand, malleable scheduling and solving of many problems at once
@ the HordeSat paradigm re-engineered and made efficient
@ state-of-the-art SAT performance from dozens to thousands of cores

23/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Engineering a Scalable SAT Solver

24/50

KIT

Karlsruhe Institute of Technology

4 . .
Succinct clause sharing

~
Memory Awareness

Distributed clause
Hierarchical merging f'"ermg Reduction of
@ + duplicate detection Exact filtering solver threads
Global and adaptive gll;glrzléssgfore Negotiated
admission criteria / from self memory panic
N J
Adaptive buffering Diversification Controlling
] Keep best clauses Gilucose, Lingeling, @) MPI Subprocess for solvers
I \?vtoer)s(gecrrsgs%fs CaDiCal, Kls.sat Q0) Seamless preemption
] i Clause shuffling QO and termination
1 For export + import Noisy parameters Wl | Fault tolerance
N J
2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

ITI Sanders

KIT

Clause Exchange in HordeSat
(7;)‘
PEs InREL
| I
Exported e @] |
clause a|)
. . . buff
Periodic collective operation AllGather urers ! d|
| Ll
@ |ocally best clauses are shared with everyone | :
® Duplicate clauses } f:
@ “Holes” in buffer carrying no information ! ; |
|
@ Buffer grows proportionally with # proc. | MPL | | £
= Bottleneck w.r.t communication and local work AllGather iRy
|
‘%l\‘ | 1
IERE
CACK ROX XOXC I
Import clauses to solvers el L)

25/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in Mallob ﬂ(IT

Karlsruhe Institute of Technology

Custom collective operation

@ Aggregate information along
binary tree of processors

@ Detect duplicates during merge
Three-way merge
® Result is of compact shape (space-limited)
& Sublinear buffer size growth:

Discard longest clauses as necessary

26/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in Mallob ﬂ(IT

Karlsruhe Institute of Technology

Custom collective operation

@ Aggregate information along
binary tree of processors

apD li ring mer
etect duplicates during merge Three-way merge

® Result is of compact shape (space-limited)

& Sublinear buffer size growth:
Discard longest clauses as necessary

@ Clause needs to meet global quality
threshold to be shared successfully

@ Quality threshold adapts to state of solving

26/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering ﬂ(IT

Karlsruhe Institute of Technology

The Problem

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously:
@ Bloom filters: fixed size, risk of false positives

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering ﬂ(IT

Karlsruhe Institute of Technology

The Problem

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously:
@ Bloom filters: fixed size, risk of false positives
Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s)

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Clause Filtering

The Problem 1.

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Bitwise OR
aggregation

Previously:

® Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s) 2

@ Aggregate bit vector v where

v[i] = \/p (p remembers ¢;) Broadcast —= [a]f] 4]

® Only import clauses ¢; for which v[i] = false

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Clause Filtering

The Problem 1.

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Bitwise OR
aggregation

Previously:

® Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s) 2

@ Aggregate bit vector v where

v[i] = \/p (p remembers ¢;) Broadcast — [afd] 4]
® Only import clauses ¢; for which v[i] = false
@ Compensate for filtered clauses next sharing!

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values A“(IT

Karlsruhe Institute of Technology

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values ﬂ(IT

Karlsruhe Institute of Technology

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

@ Use original LBD values of imported clauses?
= Growing overhead (time, space) from low-LBD clauses

@ Reset LBD values to maximum at import?
= Many clauses may be discarded very quickly

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

@ Use original LBD values of imported clauses?
= Growing overhead (time, space) from low-LBD clauses

@ Reset LBD values to maximum at import?
= Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import
@ Maintains LBD-based prioritization of clauses
@ Solver keeps full control over its LBD-2-clauses
® “Regional clauses are the best!”

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

2 3 Ic]
LBD
LBD’
Median RAM | PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3GiB 72.9
ITI Sanders

KIT

Merit of Clause Sharing, SAT vs. UNSAT

150 - 150 1

1004 [100

instances solved in < ts

instances solved in < ts

507 —— Sharing (SAT) 501 Sharing (UNSAT)
"""" No sharing (SAT) No sharing (UNSAT)
0 T T 0 T T
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]

29/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Merit of Diverse Portfolio, SAT vs. UNSAT

150 - 150 -

100 100

instances solved in < ts

instances solved in < ts

0 —— KCLG (SAT) 501 KCLG (UNSAT)
-------- L (SAT) L (UNSAT)
O T T O T T
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]

30/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification ... None?? ﬂ(IT

Karlsruhe Institute of Technology

300 - & “full”: 36 solver configs + random seeds
& + noisy parameters + input permutation
Y:' 250 + a few solvers not importing clauses
—“f) 200 - ® “none”: 36 solver configs, nothing else
3
o 150 -
j5}
2
g 100 A \
=
3 50 A
0 T T
100 200 300
Run time ¢ [s]
They're the same curve.
31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification ... None?? A“(IT

Karlsruhe Institute of Technology

300 4 & “full”: 36 solver configs + random seeds
B + noisy parameters + input permutation
Y:' 250 + a few solvers not importing clauses
g 200 1 ® “none”: 36 solver configs, nothing else
2 150 - ® Without clause sharing diversification helps a lot!
g . . .
= full div. + sharing ® Clause sharing appears to absorb common
g 1009 5 e no div. + sharing diversification techniques! How?
i 50 - full div., no sharing
no div., no sharing
0 T T
100 200 300
Run time ¢ [s]
31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification ... None?? A“(IT

Karlsruhe Institute of Technology

300 1 —— full div. + sharing ® “full”: 36 solver configs + random seeds
S no div. + sharing + noisy parameters + input permutation
Y:' 250 full div.. no sharing + a few solvers not importing clauses
"§ 200 - no div., no sharing ® “none”: 36 solver configs, nothing else
2 150 4 ' ® Without clause sharing diversification helps a lot!
8
% @ Clause sharing appears to absorb common
% 100 - diversification techniques! How?
'41 50 : @ Hypothesis:
i @ Shared clauses arrive at solvers at different times
0 == 1(')0 T 1(')1 T 1(')2 ’ @ Solvers vary in when (and what) they import
Run time £ [3 @ “Butterfly effect”
@ Clause sharing as search space pruning:
solvers won'’t re-explore pruned branches!
31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Scaling and Speedups
e v
Updated HordeSat Yemmmmmm T e -
(Lingeling) R A
§ 40 -
VS. %
Mallob % 30 -- Mallob (UNSAT)
(Kissat-CaDiCalL-Lingeling) = ~%-= Mallob (all)
E 20 - -~ Mallob (SAT)
Sat Comp. 2021 benchmarks = —v—- Horde (UNSAT)
o
Sequential baseline: & 107 —0— Horde (all)
Kissat_MAB_HyWalk —4—- Horde (SAT)
Seq. time limit: 115200 s 0 - T T T T
Par. time limit: 300s 96 384 768 1536 3072

32/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022 ﬂ(IT

Karlsruhe Institute of Technology

SAT Competition: MAIN 2020 N ANNI 2022

300
250
900 em——==z==S —— Mallob-KiCaLiGlu (2022, 800c.)
,———:::’— IRTRIE ——— Mallob-mono (2020, 800c.)
7T T e AT === Mallob-Ki (2022, 32c.)
150 - L= e

- ==~ P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)
""" Kissat-sc2020-sat (2020, 1c.)

100

solved instances (total: 354)

0 200 400 600 800 1000
Time limit per instance [s]

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022 ﬂIT

SAT Competition: MAIN 2020 N ANNI 2022

300

—

250 1

—— Mallob-KiCaLiGlu (2022, 800c.)
——— Mallob-mono (2020, 800c.)

=== Mallob-Ki (2022, 32¢c.)

=== P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

solved instances (total: 354
—
ot
S
1

50 - /}'zv’FMed. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

0 200 400 600 800 1000
Time limit per instance [s]

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022 ﬂIT

SAT Competition: MAIN 2020 N ANNI 2022

300

—

250 1

—— Mallob-KiCaLiGlu (2022, 800c.)
——— Mallob-mono (2020, 800c.)

=== Mallob-Ki (2022, 32¢c.)

=== P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

[y

(==

(=]
L

1w

50 - '/},":v""Med. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

solved instances (total: 354
—
ot
o
1

0 200 400 600 800 1000
Time limit per instance [s]

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

SAT Competition 2022

SAT Competition: MAIN 2020 N ANNI 2022

300

3 2501 +59% solved

= —— Mallob-KiCaLiGlu (2022, 800c.)
—() |—— Mallob-mono (2020, 800c.)

1 |==- Mallob-Ki (2022, 32¢.)

~—- P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

[y

jenl

[=}
L

solved instances (total: 354
—
(SN
fe=l
1

50 - /}'zf’ﬁMed. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

0 200 400 600 800 1000
Time limit per instance [s]

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)

Solving many formulas in parallel
@ Embarrassingly parallel
® Solving itself less powerful

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)

Solving many formulas in parallel
@ Embarrassingly parallel
® Solving itself less powerful

Best of both worlds?
® On demand scheduling of incoming (SAT) jobs
® Resize jobs during their execution as needed

@ Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Extreme 1: 400 Kissats in a trenchcoat
® No intra-job parallelism
@ Embarrassingly parallel job processing
(inter-job parallelism)
® Great resource efficiency

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

350

300

250 1

200

150 +

finished jobs

100

50 1

‘‘‘‘‘‘
-

--=-=- 400xKissat

0

0

1800 3600 5400
Total run time [s]

7200

ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.

You have 400 formulae (SAT Comp. '21) to solve. Go.

Extreme 2: Massively parallel solving of each job

@ One job atatime
& Assumption: Optimal Offline Schedule (OOS)

— instances sorted by run time ascendingly

® No inter-job parallelism

35/50

2024-05-13

@ Maximum speedups from parallel SAT

® Poor resource efficiency

Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

350 A

300

250 1

200

150 +

finished jobs

100

50 1

---- 400xKissat
........ 00S 1536 c.
0O0S 384 c.

0

0

1800 3600 5400 7200

Total run time [s]

ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Middle ground 1: Divide cores evenly among jobs
@ Solid speedups at low-degree parallel SAT

& At the beginning, all cores are used
& After < 15 min, < 50% of cores are used

Balyo, Iser, Schreiber: Practical SAT Solving

35/50 2024-05-13

K

Karlsruhe Institute of Technology

IT

350 A
300 - e nEET I i
9504/ /7 T
0) /-
% ll
= 2001,
S Iy
= e s
Z i
i 150 :t,: Rigid 1600x4
it ---- Rigid 400x4
100 if
:,' ---- 400xKissat
sod [00S 1536 c.
0OO0S 384 c.
0 . ' '
0 1800 3600 5400

Total run time [s]

7200

Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Middle ground 2: Divide cores dynamically among jobs

® Finishing jobs yield resources to remaining jobs
— eventually exceeding 4 x their initial resources

® Uses 100% of resources 100% of the time

® At 400 cores: Dominates 400 x Kissat!
— shows low overhead of scheduling

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

350 A

300

250 1

finished jobs

Mall 1600x4

Rigid 1600x4
—— Mall 400x4
---- Rigid 400x4
—— Mall 400x 1
--=-- 400xKissat
"""" 00S 1536 c.

00S 384 c.

1800 3600 5400 7200
Total run time [s]

ITI Sanders

Ui

Mallob: Harvest

36/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

TACAS’23: UNSAT Proofs for Distributed Solvers ﬂIT

Parallel clause-sharing solvers do not support the production of unsatisfiability proofs.

® Real, practical issue
® Some competition results of cloud solvers proved to be incorrect later!
® Growing scale of computation =- Growing probability of failures

@ Prior approaches unsatisfactory
® Limited to single machine
® Not scalable at all

Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.

37/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Background: Distributed Clause-Sharing SAT Solving

Process#1 ... Process#2 ...
Sl SQ 55 56
53 S4 S7 SS

Portfolio of different CDCL solver configurations
~ producers of conflict clauses

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S3

Clause sharing

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format? A“(IT

Karlsruhe Institute of Technology

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format

add x3 add ¢g := X3 via 5,04

add X1 Xo add Ci0 = X1 X2 via C3,Co

add X7 add c¢y1 := X7 via ¢s,C9

delete X3 delete ¢y

add x3Xs add ¢y := X3X4 via ¢7,C11

add xqx3 add c¢y3 := xyX3 via cg,Ci2

add O add Ci4 \= O via C11,C10,C1

+ compact format
+ prevalent in solvers
- costly checking

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

LRAT proof format

add ¢y 1= X3 via C5,Cs

add ¢y := xy X2 via c3,C
add c¢y1 := X7 via ¢s,C9
delete ¢y

add ¢yo := X3X; via ¢7,Cq1
add c¢y3 := xyX3 via cg,Ci2
add ¢4 := [via ¢41,C10,C4

+ more efficient checking
+ unique IDs for clauses
+ explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x3 add ¢g := X3 via 5,04
add X1 Xo add Ci0 = X1 X2 via C3,Co
add X7 add c¢y1 := X7 via ¢s,C9
delete X3 delete cq
add x3Xs add ¢y := X3X4 via ¢7,C11
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add xy add cyy := Xy via Cs,Cy : Sy S
delete X3 delete ¢ :
add x3Xs add ¢y := X3X4 via ¢7,C11
add xqx3 add c¢y3 := xyX3 via cg,Ci2 :
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add X1 add ¢4 1= X7 via Cs,Co : Sy S
delete X3 delete cg : ‘1/5 19
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add xy add cyy := Xy via Cs,Cy : Sy S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add x; add ¢y := X7 via Cs,Co S S
delete x3 delete co © 117519 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4
13‘1/7 21

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add x; add ¢y := X7 via Cs,Co S S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 ‘54
1317 21 1418 22

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously B
@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously B
@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
Uil
|

|

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

KIT

Karlsruhe Institute of Technology

@ Read all partial proofs simultaneously EI>
@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

ITI Sanders

A Sequential Approach A“(IT

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_

- 111
|

|

Il

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
Ll
|

|

I

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_

I 1171
|

|

Ikl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously :135 A

@ Qutput line < all dependencies d output _ — f—

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously :135 ——— — Ho—

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_

- 111
|

|

Ikl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

I i
i
M
Il

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

CTTTHIMT

ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously — D_— — —
@ Qutput line < all dependencies d output — - —
2. Pruning
® Required clauses R := {id(0O)}
@ Read combined proof from back to front _—
E T
2 |

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

=

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

T

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

I
8

A\\y/A
A\

Tl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢ D

|V

Tl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:
Output deletion of d, add dto R
= Output addition of ¢ D

V.

Tl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢ b

XX

|

\Y

fl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R D
= Output addition of ¢

XX

|

\Y

fl

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add d to R »
= Output addition of ¢

g
XX

i

]

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R: D

Output deletion of d, add dto R
= Output addition of ¢

XX

|

il
6

]|

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R: D

Output deletion of d, add dto R
= Output addition of ¢

XX

|

6

T

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R? 5
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

XX

|

\Y

6

1l

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

A\
V”
g
XX

6

L

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

6

]

T { 77
-

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

g
XX

6

]

TR { 17

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

g
XX

6

]

Ty { 77

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= Output addition of ¢

g
XX

6

T
]

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach e e ey

1. Combination

@ Read all partial proofs simultaneously

i
7l
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

3. Reverse lines of pruned proof

g
XX

i
&
e

T
]

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Karlsruhe Institute of Technology

Distributed Pruning: Schematic Overview

Epoch 0

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Schematic Overview

‘Q\Q 0
.
.
.
o
o
o

Epoch 0 Sharing Epoch 1

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Schematic Overview

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Schematic Overview

o

°

°

°

() First “prune”,
e then combine!
°

°

°

°

°

°

°

°

°

s UO

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Karlsruhe Institute of Technology

Distributed Pruning: Schematic Overview

° <«
- ®) 0)
o O O First “prune”,
o then combine!
e OO 2 00 [=50 |
o O b O A Trace dependencies
[O { O epoch by epoch
°
[
t o ® Se
® =

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Schematic Overview
[4— .
¢ O - == @
e O O V= O N
[] b s First “prune”,
: then combine!
o VU O [0 O =0
® Q w w Trace dependencies
P O o O i epoch by epoch
° &
® £ o Redistribute remote IDs
o O at epoch borders
e -
® =
o O ry @
Epoch 0 Sharing Epoch 1 Sharing Epoch 2

41/50

2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Schematic Overview
\ / \\\Q o rIjirst “pruQe”,'
oG 1 -

e

g

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

Trace dependencies
O & epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Real Data

— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Real Data
— Derived clause IDs —

S

Ss

S;

S4

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Real Data
— Derived clause IDs —

S

Ss

S;

S4

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Real Data
— Derived clause IDs —

S

Ss

S;

S4

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Pruning: Real Data
— Derived clause IDs —

S

Ss

S;

S4

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180-variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores X 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

a 180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

a 180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S3

Ss

~ 180-variable random 3-SAT formula. 4 notebook cores x 1.7s. 300k dendencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S3

Ss

180-variable random 3-SAT formula. 4 notebook cores x 1.7's. 300k dpndencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;
S;

S;

Ss

180-variable randm 3-SAT formula. 4 notebook cores x 1.7's. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data IT

— Derived clause IDs —

S
S

S3

S4 P

180-variable random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

Sy

Sz

Ss

Ss

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Distributed Combination

@ Hierarchically merge pruning output
along tree of processors

@ Root processor
adds approximated “delete” lines
writes stream into file
reverses file

A /] /]
l Buffered ><>
communication

43/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

OO

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving ﬂ] Proof assembly Pr:

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving g] Proof assembly Pr:

]

Postprocessing

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving g] Proof assembly Pr:

]

Postprocessing

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

45/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources
® 1600x setup: 100x m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)
® 64 x setup: 1x m6i.1l6xlarge EC2 instance (64 hwthreads, 256 GB RAM)
@ Sequential setup: One m6i.4xlarge EC2 instance

< 1000 s solving
< 4000 s proof prod.

45/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Solving Times

46/50

2024-05-13

350
300
fl 250
200

150

instances solved in

P PV T
| 000° 0000 0@ D
-0
vH
T -w',A’V
T T T T T
0 200 400 600 800 1000

Solving time ¢ [s]

Balyo, Iser, Schreiber: Practical SAT Solving

= [1600x] baseline (Mallob-KiCaLiGlu)
-+ [64x] baseline (Parkissat-rs)
- [1x] baseline (Kissat_-MAB-HyWalk)

KIT

Karlsruhe Institute of Technology

ITI Sanders

Evaluation: Solving Times

46/50

2024-05-13

4 [1600%] baseline (Mallob-KiCaLiGlu)
-+~ [1600x] ours without LRAT logging
0-+ [64x] baseline (Parkissat-rs)

--o-= [64x] ours without LRAT logging
<% [1x] baseline (Kissat-MAB-HyWalk)

350 AderrreeiAreraneans
AR A]
300 A Npoy? L
U1 250
£ .
v
g 200 A v
3 -
8 150
c
il
@
£ 100
BiS
50
0 T T T T T
0 200 400 600 800
Solving time ¢ [s]
Balyo, Iser, Schreiber: Practical SAT Solving

1000

SKIT

Karlsruhe Institute of Technology

ITI Sanders

SKIT

Evaluation: Solving Times

350

300 A

4 [1600x] baseline (Mallob-KiCaLiGlu)
-+~ [1600x] ours without LRAT logging
—=— [1600x] ours

0-+ [64x] baseline (Parkissat-rs)

--o-= [64x] ours without LRAT logging
—e— [64x] ours

<% [1x] baseline (Kissat-MAB-HyWalk)

U1 250

200 /4

150

instances solved in

T T T T
0 200 400 600 800 1000
Solving time ¢ [s]

46/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Proof Output A“(IT

Karlsruhe Institute of Technology

How large are the resulting proofs?

(139) (139) (135) (154)

(0]
80 -
™~ (0]
3 60 - o ©O
g 8
N o
5
<
a
,,,,,,,, I
p1600
47/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

ITI Sanders

Karlsruhe Institute of Technology

Evaluation: Proof Output A“(IT

How large are the resulting proofs? How fast can we check the proofs?
(139) (139) (135) (154) (99) (81*) (139) (135) (154*
o 40
80 - o
Q
R o g 30 4
& 601 o © g
g 8 % 18
‘0 =) w 20
5 40 1 o 8
o =
E o
20 - S 10 g S
NI BT e ! iTiiH
HMP64 564 p1600 Kissat HMP64 564 P64 P16OO

47/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Overhead

48/50

Proof assembly

139%) (135) (154*

10 4

Multiple of solving time

o

© 8
8

2024-05-13

Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Evaluation: Overhead
Proof assembly Postprocessing
139%) (135) (154 (139) (135) (154*
1019 o
g o
o
[8_ (9]
£%5 o 8 £
a° 20
= 64 >
3 8
s s 4
s 4 s
E 2,lo o

564 PI64 P1I600

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

Evaluation: Overhead
Proof assembly Postprocessing Total (HMP: checking only)
139%) (135) (154 (139) (135) (154* 5o L(BLY) (139) (135) (154"
1019 o
g o
o] 40
[8 [0} (9]
£%5 o 8 £ £
0 207 2
3 6 > = 307
2 3 2 o
5 S 4 s
24| 8 2 2 201 °
= = £l 1
3 =] =3
[e) (e}
= S 5 =
1 f 7777777 1 7777 f L
= — = B — Ij.—_I
564 P64 P1600 564 P64 P1600 HMP64 564 P64 PlﬁOO

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

.
Conclusion

Takeaways

® Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

@ All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself

® Exploit embarrassingly parallel job processing for interactive solving & best efficiency

® Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

49/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

.
Conclusion

Takeaways

® Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

@ All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself

® Exploit embarrassingly parallel job processing for interactive solving & best efficiency

® Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

Recent and ongoing work
@ Distributed incremental SAT solving with Mallob
& QBF solving with Mallob

https://github.com/domschrei/mallob

49/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Ui

References

Publications

Balyo, T., Sanders, P, & Sinz, C. (2015). Hordesat: A massively parallel portfolio SAT solver. In Theory and Applications of Satisfiability
Testing—SAT 2015: 18th International Conference, 2015, Proceedings 18 (pp. 156-172).

Biere, A. (2010). Lingeling, Plingeling, Picosat and Precosat at SAT race 2010.

Ehlers, T., & Nowotka, D. (2019). Tuning parallel sat solvers. Proceedings of Pragmatics of SAT, 59, 127-143.

Hamadi, Y., Jabbour, S., & Sais, L. (2010). ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
6(4), 245-262.

Michaelson, D., Schreiber, D., Heule, M. J., Kiesl-Reiter, B., & Whalen, M. W. (2023). Unsatisfiability proofs for distributed
clause-sharing SAT solvers. In Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (pp. 348-366).
Roussel, O. (2012). Description of ppfolio (2011). Proc. SAT Challenge, 46.

Sanders, P, & Schreiber, D. (2022,). Decentralized online scheduling of malleable NP-hard jobs. In Euro-Par 2022: Parallel Processing:
28th International Conference on Parallel and Distributed Computing, 2022, Proceedings (pp. 119-135).

Schreiber, D. (2022). Mallob in the SAT competition 2022. Proc. SAT Competition, 38.

Schreiber, D., & Sanders, P. (2021). Scalable SAT solving in the cloud. In Theory and Applications of Satisfiability Testing—SAT 2021:
24th International Conference, 2021, Proceedings 24 (pp. 518-534).

External images

Slide 12, SuperMUC—NG: https://doku.lrz.de/files/10745965/10745966/1/1684599593177/image2019-11-15_12-48-5.png
Slide 23, “They're the same picture.” meme:
https://cdn.eldeforma.com/wp-content/uploads/2020/08/theyre-the-same-picture-pam-the-office-meme-1024x580.png

50/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

https://doku.lrz.de/files/10745965/10745966/1/1684599593177/image2019-11-15_12-48-5.png
https://cdn.eldeforma.com/wp-content/uploads/2020/08/theyre-the-same-picture-pam-the-office-meme-1024x580.png

walob it

Karlsruhe Institute of Technology

Lingeling
Glucose
Further
solvers

Solver Interfaces I

\ Incremental SAT :
... 1 - applications "~~~ " "~ !
Mallob SAT Engine Further " ' Further |
Clause sharing - Incremental wrapper | 2pplications IPASIR bridge interfaces !
Application Interface JSON Interface
Job tree protocol - Internal communication - Deployment File watching - Job parsing
Worker Module Client Module
Scheduling protocol - Load balancing - Job database | Job queue - Worker communication

Mallob Core
Message handler - Basic communication protocols - Data serialization - System diagnostics

Mallob

System Libraries
Message Passing Interface - Multithreading and Concurrency - Inter-Process Communication

Hardware - Firmware - Operating System

51/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving

ITI Sanders

Sharing vs. diversification

52/50

2024-05-13

6000
5000
4000
3000
2000

1000 A

literals in distinct shared clauses

—— Div., sharing

No div., sharing
Div., no sharing

No div., no sharing

0 T T
0 20 40

Run time [s]

Balyo, Iser, Schreiber: Practical SAT Solving

KIT

Karlsruhe Institute of Technology

ITI Sanders

KIT

Scaling Experiments (2021)
i A
Mallob-monol:° vs. HordeSatyew 3001 —A- Spor(M) ’
°0 7/
£ 3+ Si(H) 2
Speedups & 207 A Spnea(M) A./‘/
Instance F solved by parallel approach 9004 B SmealH) P 3
= Par. run time Tps(F) < 300s g e
= Seq. run time Tseq(F) < 50000 s & 150 - /,A///
(Tseq(F) := 50000 s if unsolved) 3 _oE
£°100 1 il
Total speedup Si: ’§ /,,//‘ _______ A
> F Tseq(F) / >_F Tpar(F) & 045 B 0
'.:::::::::::éiiii ,,,,,,,,
Median speedup Seq: 0 g o : . .
mediang{ Tseq(F)/ Tpar(F)} 12 40 160 640 2560

cores (log. scale)

53/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

KIT

SAT Competition 2020 (Cloud Track)

300

200

100

solved instances (ALL)

& bl

—=&— mallob-mono —@— TopoSAT2 ——+— Slime
paracooba —2—CTSAT —#— paracooba-march

0 200 400 600 800 1,000

wallclock time

54/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2021 (Cloud Track)

400
350
300
250
200
150
100
50
—— vbs —— pmcompspsmpi
—%— mallobhc —o— slime
—s— mallob pmcomspscommpi
0 —— mergehordesat == paracooba
I T T T t
0 200 600 800 1000

55/50 2024-05-13

Balyo, Iser, Schreiber:

Practical SAT Solving

KIT

Karlsruhe Institute of Technology

@ MallobHC: mixed solver portfolio

® VBS of all Main track solvers solved
325 instances within 5000 s

ITI Sanders

