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Parallel SAT solving approaches
® Basic search space splitting
@ Clause sharing
@ Cube&Conquer
a Portfolio solvers (without and with clause sharing)

A deep dive into Mallob
@ QOverview
@ Scalable clause sharing
@ Experiments and results
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Parallel Portfolios: An analogy ﬂIT
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Approach I: Search Space Partitioning
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Approach I: Search Space Partitioning
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Explicit Partitioning

1st Parallel DPLL Implementation by B6hm & Speckenmeyer (1994)
Explicit Load Balancing

Completely distributed (no leader / worker roles)

Each process receives the entire formula and a few partial assignments
Each process can be worker or balancer:

® Worker: solve or split the formula, use the partial assignments
@ Balancer: estimate workload, communicate, stop

a
@ A list of partial assignments is generated
a
a

Switch to balancer whenever worker is finished
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Explicit Partitioning

“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al., 1996

Centralized leader-worker architecture

® Communication only between leader and workers
@ | eader assigns partial assignments using Guiding Path

® Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
® | eader splits open nodes and assigns job to workers

@ Workers return Guiding Path when terminated by leader
® Modern features of fault tolerance, preemption of solving tasks
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Explicit Partitioning

Guiding Path: List of triples (variable, branch, open)
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Explicit Partitioning

SATZ (Jurkowiak et al., 2001) improves PSATO

Work stealing for workload balancing

@ An idle worker requests work from the leader

® The leader splits the work of the most loaded worker
® The idle worker and most loaded worker get the parts
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Clause Sharing Parallel Solvers

PaSAT (Blochinger et al., 2001)
® First parallel CDCL with clause sharing

& Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004)
® First shared-memory parallel solver

® Multi-core processors started to be popular
® uses same techniques as the previous solvers (guiding path etc.)

.. and many many more similar solvers
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Problems with Partitioning

What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

| I—
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z=0 r=1
I — I —
F|m:0 F|:t*1
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Problems with Partitioning

What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

F
Uneven splits
x=0 r=1 L .
® One subformula is trivial, the other is just as hard as F
® Ping-pong effect for workers processing trivial formulae,
F|m:0 Fl‘%:1 communication / synchronization dominates run time
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Problems with Partitioning
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What we want: Even splits
& Split yields sub-formulas of similar difficulty
® Balanced partitioning of work
& Few or no dynamic (re-)balancing needed

Uneven splits
® One subformula is trivial, the other is just as hard as F

® Ping-pong effect for workers processing trivial formulae,
Flg—1 communication / synchronization dominates run time

Bogus splits
® Both Fj,—o and Fjy— are just as hard as F
@ Divide&Conquer becomes Multiply&Surrender!
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

@ Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

® Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

a Best performance mostly with problem-specific decision heuristics
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)

Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

@ Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice
® Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)
a Best performance mostly with problem-specific decision heuristics
@ State-of-the-art for hard combinatorial problems

@ Used to solve the “Pythagorean Triples” problem (~200TB proof)
® .. or more recently “Schur Number 5” (~2PB proof)

@ Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)
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Parallel Portfolios: An analogy ﬂIT
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The Assembly of Nerds
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@ Complex and large logic puzzle 5 aT5
® n puzzle experts at your disposition 9
— individual mindsets, approaches, 8 5| 191 [2
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How do we employ and “orchestrate” our experts?
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Approach Il: Pure Portfolio
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Approach Il: Pure Portfolio
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Approach Il: Pure Portfolio
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Ta(x)/Tp(X)
where Q is the best available sequential algorithm.
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, . .., A, where for each input x, algorithm A; has run time T, (x).
The Virtual Best Solver (VBS) for Ay, ..., A, has run time T*(x) = min{Ta,(X), ..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
® On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Ta(x)/Tp(X)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
@ There is always a sequential algorithm performing at least as well
® Consequence: Not resource efficient, not scalable
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Pure SAT Portfolios ﬂIT

ppfolio: Winner of Parallel Track in the 2011 SAT Competition

® Just a bash script combining the best sequential solvers from 2010:
“$ ./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

® Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth’
— “probably the laziest and most stupid solver ever written”
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Pure SAT Portfolios ﬂIT

ppfolio: Winner of Parallel Track in the 2011 SAT Competition

® Just a bash script combining the best sequential solvers from 2010:
“$ ./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

® Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth’
— “probably the laziest and most stupid solver ever written”

@ Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

® Pure portfolios no longer permitted in SAT Competitions
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Approach llI+: Cooperative Portfolio
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Approach llI+: Cooperative Portfolio
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Approach llI+: Cooperative Portfolio
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Cooperative Portfolio

Assembly of Nerds, enhanced

® The experts periodically gather for brief standup meetings

& Via some protocol, the experts exchange the most valuable insights gained since the last meeting
® Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:
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Cooperative Portfolio

Assembly of Nerds, enhanced

® The experts periodically gather for brief standup meetings

& Via some protocol, the experts exchange the most valuable insights gained since the last meeting
® Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
@ Explored branch of search space — safe to prune
@ Potential step for deriving unsatisfiability
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Clause Sharing Portfolios: Design Space

Portfolio considerations
@ Which sequential solvers to employ?
& How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Cadical::diversify( seed) {

solver->set(name: " ", val: seed);
itch (getDiversificationIndex % getNumOriginalbDiversifications

okay = solver->set(name: "p : val: 0); br H

: okay solver->configure("s ;
okay solver->set(name:

: okay solver->configure("un

: okay solver->set(name ondition", wval: 1);

: okay solver->set(name Lk, wval:0); bre

: okay solver->set(name 7 tint", wval

: okay solver->set(name: "c ', val: 1); 5

: okay solver->set(mame: "shuffle", wval: 1 solver->set(name:

: okay solver->set(name: g ing", wval: 0); break;
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Clause Sharing Portfolios: Design Space

Portfolio considerations
@ Which sequential solvers to employ?

@ How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Clause exchange considerations
@ How often to share? (immediate/eager? delayed/lazy? periodic?)
® How many clauses to share? (fixed volume? fixed quality criteria?)
@ Which clauses to share? (shortest? lowest LBD?)
@ How to implement sharing? (all-to-all? leader-worker? some communication graph?)
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Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009)

® Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, .. .

@ Eager exchange of clauses of length < 8 via lockless queues
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Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009)

® Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, .. .

@ Eager exchange of clauses of length < 8 via lockless queues

Plingeling (Biere 2010)
@ Portfolio over Lingeling configurations (shared-memory parallelism)

® | azy exchange of information over “boss thread”

— 2010: Unit clauses only

— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length < 40, LBD < 8

@ Best parallel solver for many years

ITI Sanders
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Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.
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Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
® No shared memory — communication protocols required
& Diminishing returns due to exhausted diversification of solvers
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Massively parallel hardware?

Distributed computing

In distributed computing, several machines

(with no shared main memory) run together.

On each machine we run a number of processes,

each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
® No shared memory — communication protocols required
& Diminishing returns due to exhausted diversification of solvers

® Some exchange schemes are conceptually not scalable

® “Star graph”: Master process collects, serves all exported clauses
a® Naive (quadratic) all-to-all exchange of clauses
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Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015)
® Decentralization: No single leader node / process

& Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

ITI Sanders
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Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015)
® Decentralization: No single leader node / process
a Two-level (“hybrid”) parallelization

— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

@ Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds

® Periodic all-to-all clause exchange

ITI Sanders
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HordeSat: Results

® Super-linear speedups for individual instances
= speedup > c on c cores!
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HordeSat: Results

® Super-linear speedups for individual instances

= speedup > c on c cores!
— SAT: “NP luck” — some solver got lucky
— UNSAT: distributed memory accommodates

more clauses than any sequential solver
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HordeSat: Results
® Super-linear speedups for individual instances \;' 200 f,f-"f: ----------
= speedup > ¢ on c cores! = £ — = 2048c.
— SAT: “NP luck” — some solver got lucky = il,'/ R 512¢.
— UNSAT: distributed memory accommodates ; il =TT ---- 128c.
. EH R
more clauses than any sequential solver § 200 17 ,/’ 32c.
® Median speedup: 3 at 16 cores, 11.5 at 512 cores & ',/ —— Lingeling
— Efficiency: 11.5/512 ~ 2.2% * f
— Deploying HordeSat is often not worth it 0 250 500 750
@ No improvement beyond ~ 500 cores Run time ¢ (s)
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From HordeSat to Mallob

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?
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From HordeSat to Mallob

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob

Mallob is a platform for SAT solving (and other NP-hard problems) with:
® multi-user, on-demand, malleable scheduling and solving of many problems at once
@ the HordeSat paradigm re-engineered and made efficient
@ state-of-the-art SAT performance from dozens to thousands of cores
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Engineering a Scalable SAT Solver
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Clause Exchange in HordeSat
( 7;)‘
PEs InREL
| I
Exported e @] |
clause a| )
. . . buff
Periodic collective operation AllGather urers ! d|
| Ll
@ |ocally best clauses are shared with everyone | :
® Duplicate clauses } f:
@ “Holes” in buffer carrying no information ! ; |
|
@ Buffer grows proportionally with # proc. | MPL | | £
= Bottleneck w.r.t communication and local work AllGather iRy
|
‘%l\‘ | 1
IERE
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Import clauses to solvers el L)
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Clause Exchange in Mallob ﬂ(IT

Karlsruhe Institute of Technology

Custom collective operation

@ Aggregate information along
binary tree of processors

@ Detect duplicates during merge
Three-way merge
® Result is of compact shape (space-limited)
& Sublinear buffer size growth:

Discard longest clauses as necessary
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Clause Exchange in Mallob ﬂ(IT

Karlsruhe Institute of Technology

Custom collective operation

@ Aggregate information along
binary tree of processors

apD li ring mer
etect duplicates during merge Three-way merge

® Result is of compact shape (space-limited)

& Sublinear buffer size growth:
Discard longest clauses as necessary

@ Clause needs to meet global quality
threshold to be shared successfully

@ Quality threshold adapts to state of solving

26/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders



Clause Filtering ﬂ(IT

Karlsruhe Institute of Technology

The Problem

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously:
@ Bloom filters: fixed size, risk of false positives
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Clause Filtering ﬂ(IT

Karlsruhe Institute of Technology

The Problem

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously:
@ Bloom filters: fixed size, risk of false positives
Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s)
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Clause Filtering

The Problem 1.

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Bitwise OR
aggregation

Previously:

® Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s) 2

@ Aggregate bit vector v where

v[i] = \/p (p remembers ¢;) Broadcast —= [a]f] 4]

® Only import clauses ¢; for which v[i] = false
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Clause Filtering

The Problem 1.

Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Bitwise OR
aggregation

Previously:

® Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter

® Process p remembers clauses it exported itself
and tags their producing solver(s) 2

@ Aggregate bit vector v where

v[i] = \/p (p remembers ¢;) Broadcast — [afd] 4]
® Only import clauses ¢; for which v[i] = false
@ Compensate for filtered clauses next sharing!
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LBD Values A“(IT

Karlsruhe Institute of Technology

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
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LBD Values ﬂ(IT

Karlsruhe Institute of Technology

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

@ Use original LBD values of imported clauses?
= Growing overhead (time, space) from low-LBD clauses

@ Reset LBD values to maximum at import?
= Many clauses may be discarded very quickly
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LBD Values

a Clause quality metric, central for whether to keep a clause

@ Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

@ Use original LBD values of imported clauses?
= Growing overhead (time, space) from low-LBD clauses

@ Reset LBD values to maximum at import?
= Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import
@ Maintains LBD-based prioritization of clauses
@ Solver keeps full control over its LBD-2-clauses
® “Regional clauses are the best!”
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Karlsruhe Institute of Technology

2 3 Ic]
LBD
LBD’
Median RAM | PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3GiB 72.9
ITI Sanders
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Merit of Clause Sharing, SAT vs. UNSAT

150 - 150 1

1004 [ 100

# instances solved in < ts

# instances solved in < ts

507 —— Sharing (SAT) 501 Sharing (UNSAT)
"""" No sharing (SAT) No sharing (UNSAT)
0 T T 0 T T
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]
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Merit of Diverse Portfolio, SAT vs. UNSAT

150 - 150 -

100 100

# instances solved in < ts

# instances solved in < ts

0 —— KCLG (SAT) 501 KCLG (UNSAT)
-------- L (SAT) L (UNSAT)
O T T O T T
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]
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Merit of Diversification ... None?? ﬂ(IT

Karlsruhe Institute of Technology

300 - & “full”: 36 solver configs + random seeds
& + noisy parameters + input permutation
Y:' 250 + a few solvers not importing clauses
—“f) 200 - ® “none”: 36 solver configs, nothing else
3
o 150 -
j5}
2
g 100 A \
=
3 50 A
0 T T
100 200 300
Run time ¢ [s]
They're the same curve.
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Merit of Diversification ... None?? A“(IT

Karlsruhe Institute of Technology

300 4 & “full”: 36 solver configs + random seeds
B + noisy parameters + input permutation
Y:' 250 + a few solvers not importing clauses
g 200 1 ® “none”: 36 solver configs, nothing else
2 150 - ® Without clause sharing diversification helps a lot!
g . . .
= full div. + sharing ® Clause sharing appears to absorb common
g 1009 5 e no div. + sharing diversification techniques! How?
i 50 - full div., no sharing
no div., no sharing
0 T T
100 200 300
Run time ¢ [s]
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Merit of Diversification ... None?? A“(IT

Karlsruhe Institute of Technology

300 1 —— full div. + sharing ® “full”: 36 solver configs + random seeds
S no div. + sharing + noisy parameters + input permutation
Y:' 250 full div.. no sharing + a few solvers not importing clauses
"§ 200 - no div., no sharing ® “none”: 36 solver configs, nothing else
2 150 4 ' ® Without clause sharing diversification helps a lot!
8
% @ Clause sharing appears to absorb common
% 100 - diversification techniques! How?
'41 50 : @ Hypothesis:
i @ Shared clauses arrive at solvers at different times
0 == 1(')0 T 1(')1 T 1(')2 ’ @ Solvers vary in when (and what) they import
Run time £ [3 @ “Butterfly effect”
@ Clause sharing as search space pruning:
solvers won'’t re-explore pruned branches!
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Scaling and Speedups
e v
Updated HordeSat Yemmmmmm T e -
(Lingeling) R A
§ 40 -
VS. %
Mallob % 30 -- Mallob (UNSAT)
(Kissat-CaDiCalL-Lingeling) = ~%-= Mallob (all)
E 20 - -~ Mallob (SAT)
Sat Comp. 2021 benchmarks = —v—- Horde (UNSAT)
o
Sequential baseline: & 107 —0— Horde (all)
Kissat_MAB_HyWalk —4—- Horde (SAT)
Seq. time limit: 115200 s 0 - T T T T
Par. time limit: 300s 96 384 768 1536 3072
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SAT Competition 2022 ﬂ(IT

Karlsruhe Institute of Technology

SAT Competition: MAIN 2020 N ANNI 2022

300
250
900 em——==z==S —— Mallob-KiCaLiGlu (2022, 800c.)
_,———:::’—_ IRTRIE ——— Mallob-mono (2020, 800c.)
7T T e AT === Mallob-Ki (2022, 32c.)
150 - L= e

- ==~ P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)
""" Kissat-sc2020-sat (2020, 1c.)

100

# solved instances (total: 354)

0 200 400 600 800 1000
Time limit per instance [s]
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SAT Competition 2022 ﬂIT

SAT Competition: MAIN 2020 N ANNI 2022

300

—

250 1

—— Mallob-KiCaLiGlu (2022, 800c.)
——— Mallob-mono (2020, 800c.)

=== Mallob-Ki (2022, 32¢c.)

=== P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

# solved instances (total: 354
—
ot
S
1

50 - /}'zv’FMed. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

0 200 400 600 800 1000
Time limit per instance [s]
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SAT Competition 2022 ﬂIT

SAT Competition: MAIN 2020 N ANNI 2022

300

—

250 1

—— Mallob-KiCaLiGlu (2022, 800c.)
——— Mallob-mono (2020, 800c.)

=== Mallob-Ki (2022, 32¢c.)

=== P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

[y

(==

(=]
L

1w

50 - '/},":v""Med. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

# solved instances (total: 354
—
ot
o
1

0 200 400 600 800 1000
Time limit per instance [s]
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SAT Competition 2022

SAT Competition: MAIN 2020 N ANNI 2022

300

3 2501 +59% solved

= —— Mallob-KiCaLiGlu (2022, 800c.)
—() |—— Mallob-mono (2020, 800c.)

1 |==- Mallob-Ki (2022, 32¢.)

~—- P-MCOMSPS-STR-32 (2020, 32c.)
----- Kissat-MAB-ESA (2022, 1c.)

----- Kissat-sc2020-sat (2020, 1c.)

200 A

[y

jenl

[=}
L

# solved instances (total: 354
—
(SN
fe=l
1

50 - /}'zf’ﬁMed. speedup (solved by both): 16.2
7 Med. speedup (Tseq < 5000 s): 21

7

0 200 400 600 800 1000
Time limit per instance [s]
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Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)
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Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)

Solving many formulas in parallel
@ Embarrassingly parallel
® Solving itself less powerful
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Better Efficiency?

Massive parallelism for a single formula
® Faster solving times
@ Can resolve problems out of reach for sequential solvers
@ Not that resource efficient (on average)

Solving many formulas in parallel
@ Embarrassingly parallel
® Solving itself less powerful

Best of both worlds?
® On demand scheduling of incoming (SAT) jobs
® Resize jobs during their execution as needed

@ Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present
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Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.
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Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Extreme 1: 400 Kissats in a trenchcoat
® No intra-job parallelism
@ Embarrassingly parallel job processing
(inter-job parallelism)
® Great resource efficiency
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Karlsruhe Institute of Technology
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-
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Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.

You have 400 formulae (SAT Comp. '21) to solve. Go.

Extreme 2: Massively parallel solving of each job

@ One job atatime
& Assumption: Optimal Offline Schedule (OOS)

— instances sorted by run time ascendingly

® No inter-job parallelism

35/50

2024-05-13

@ Maximum speedups from parallel SAT

® Poor resource efficiency

Balyo, Iser, Schreiber: Practical SAT Solving
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Karlsruhe Institute of Technology
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Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Middle ground 1: Divide cores evenly among jobs
@ Solid speedups at low-degree parallel SAT

& At the beginning, all cores are used
& After < 15 min, < 50% of cores are used

Balyo, Iser, Schreiber: Practical SAT Solving
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Solving 400 Formulae on up to 6400 Cores

Problem statement

You allocate x € {400, 1600,6400} cores for 2 h.
You have 400 formulae (SAT Comp. '21) to solve. Go.

Middle ground 2: Divide cores dynamically among jobs

® Finishing jobs yield resources to remaining jobs
— eventually exceeding 4 x their initial resources

® Uses 100% of resources 100% of the time

® At 400 cores: Dominates 400 x Kissat!
— shows low overhead of scheduling
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Mallob: Harvest
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TACAS’23: UNSAT Proofs for Distributed Solvers ﬂIT

Parallel clause-sharing solvers do not support the production of unsatisfiability proofs.

® Real, practical issue
® Some competition results of cloud solvers proved to be incorrect later!
® Growing scale of computation =- Growing probability of failures

@ Prior approaches unsatisfactory
® Limited to single machine
® Not scalable at all

Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.
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Background: Distributed Clause-Sharing SAT Solving

Process#1 ... Process#2 ...
Sl SQ 55 56
53 S4 S7 SS

Portfolio of different CDCL solver configurations
~ producers of conflict clauses
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Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S3

Clause sharing
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Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2
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Which Proof Format? A“(IT

Karlsruhe Institute of Technology

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O
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Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking
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Which Proof Format?
DRAT proof format LRAT proof format

add x3 add ¢g := X3 via 5,04

add X1 Xo add Ci0 = X1 X2 via C3,Co

add X7 add c¢y1 := X7 via ¢s,C9

delete X3 delete ¢y

add x3Xs add ¢y := X3X4 via ¢7,C11

add xqx3 add c¢y3 := xyX3 via cg,Ci2

add O add Ci4 \= O via C11,C10,C1

+ compact format
+ prevalent in solvers
- costly checking
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Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

LRAT proof format

add ¢y 1= X3 via C5,Cs

add ¢y := xy X2 via c3,C
add c¢y1 := X7 via ¢s,C9
delete ¢y

add ¢yo := X3X; via ¢7,Cq1
add c¢y3 := xyX3 via cg,Ci2
add ¢4 := [ via ¢41,C10,C4

+ more efficient checking
+ unique IDs for clauses
+ explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x3 add ¢g := X3 via 5,04
add X1 Xo add Ci0 = X1 X2 via C3,Co
add X7 add c¢y1 := X7 via ¢s,C9
delete X3 delete cq
add x3Xs add ¢y := X3X4 via ¢7,C11
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses

- costly checking + explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add xy add cyy := Xy via Cs,Cy : Sy S
delete X3 delete ¢ :
add x3Xs add ¢y := X3X4 via ¢7,C11
add xqx3 add c¢y3 := xyX3 via cg,Ci2 :
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add X1 add ¢4 1= X7 via Cs,Co : Sy S
delete X3 delete cg : ‘1/5 19
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add xy add cyy := Xy via Cs,Cy : Sy S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add x; add ¢y := X7 via Cs,Co S S
delete x3 delete co © 117519 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4
13‘1/7 21

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!
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Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add x; add ¢y := X7 via Cs,Co S S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 ‘54
1317 21 1418 22

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!
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A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously B
@ Qutput line < all dependencies d output
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Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously B
@ Qutput line < all dependencies d output
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A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
Uil
|

|

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders



A Sequential Approach

1. Combination

KIT

Karlsruhe Institute of Technology

@ Read all partial proofs simultaneously EI>
@ Qutput line < all dependencies d output
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A Sequential Approach A“(IT

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output
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A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output
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|
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A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output
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|
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A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output
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A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously :135 A

@ Qutput line < all dependencies d output _ — f—
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A Sequential Approach

1. Combination
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@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢
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Karlsruhe Institute of Technology

Distributed Pruning: Schematic Overview

Epoch 0
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Distributed Pruning: Real Data

— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch
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Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180-variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch
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a 180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin
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Distributed Combination

@ Hierarchically merge pruning output
along tree of processors

@ Root processor
adds approximated “delete” lines
writes stream into file
reverses file

A /] /]
l Buffered ><>
communication
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Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)
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Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022
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Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources
® 1600x setup: 100x m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)
® 64 x setup: 1x m6i.1l6xlarge EC2 instance (64 hwthreads, 256 GB RAM)
@ Sequential setup: One m6i.4xlarge EC2 instance

< 1000 s solving
< 4000 s proof prod.
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Evaluation: Solving Times
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Evaluation: Proof Output A“(IT

How large are the resulting proofs? How fast can we check the proofs?
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Evaluation: Overhead
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Evaluation: Overhead
Proof assembly Postprocessing Total (HMP: checking only)
139%) (135) (154 (139) (135) (154* 5o L(BLY) (139) (135) (154"
1019 o
g o
o] 40
[ 8 [0} (9]
£%5 o 8 £ £
0 207 2
3 6 > = 307
2 3 2 o
5 S 4 s
24| 8 2 2 201 °
= = £l 1
3 =] =3
[e) (e}
= S 5 =
1 f 7777777 1 7777 f L
= — = B — Ij.—_I
564 P64 P1600 564 P64 P1600 HMP64 564 P64 PlﬁOO

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders



KIT

.
Conclusion

Takeaways

® Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

@ All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself

® Exploit embarrassingly parallel job processing for interactive solving & best efficiency

® Emitting proofs of unsatisfiability is nontrivial and requires careful engineering
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— Pure portfolio
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@ All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself

® Exploit embarrassingly parallel job processing for interactive solving & best efficiency

® Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

Recent and ongoing work
@ Distributed incremental SAT solving with Mallob
& QBF solving with Mallob

https://github.com/domschrei/mallob
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Scaling Experiments (2021)
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SAT Competition 2020 (Cloud Track)
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SAT Competition 2021 (Cloud Track)
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@ MallobHC: mixed solver portfolio

® VBS of all Main track solvers solved
325 instances within 5000 s
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