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Basic search space splitting
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Experiments and results
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The Assembly of Nerds
Complex and large logic puzzle

n puzzle experts at your disposition

How do we employ and “orchestrate” our experts?
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Parallel Portfolios: An analogy
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Partition search space at some
decisions
⇒ Independent subproblems
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Approach I: Search Space Partitioning
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1st Parallel DPLL Implementation by Böhm & Speckenmeyer (1994)

Explicit Load Balancing
Completely distributed (no leader / worker roles)

A list of partial assignments is generated

Each process receives the entire formula and a few partial assignments
Each process can be worker or balancer:

Worker: solve or split the formula, use the partial assignments
Balancer: estimate workload, communicate, stop

Switch to balancer whenever worker is finished
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“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al., 1996

Centralized leader-worker architecture
Communication only between leader and workers
Leader assigns partial assignments using Guiding Path

Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
Leader splits open nodes and assigns job to workers

Workers return Guiding Path when terminated by leader

Modern features of fault tolerance, preemption of solving tasks
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Guiding Path: List of triples (variable, branch, open)

x1

x6

x4

x2

1 0

0 1

01

10

?〈
(x1, 0, 0), (x6, 1, 0), (x4, 1, 1), (x2, 0, 0)

〉
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SATZ (Jurkowiak et al., 2001) improves PSATO

Work stealing for workload balancing
An idle worker requests work from the leader

The leader splits the work of the most loaded worker

The idle worker and most loaded worker get the parts
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PaSAT (Blochinger et al., 2001)
First parallel CDCL with clause sharing

Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004)
First shared-memory parallel solver

Multi-core processors started to be popular

uses same techniques as the previous solvers (guiding path etc.)

... and many many more similar solvers
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F

x = 0 x = 1

F|x=0 F|x=1

Health bar

What we want: Even splits

Split yields sub-formulas of similar difficulty

Balanced partitioning of work

Few or no dynamic (re-)balancing needed

Uneven splits

One subformula is trivial, the other is just as hard as F

Ping-pong effect for workers processing trivial formulae,
communication / synchronization dominates run time

Bogus splits

Both F|x=0 and F|x=1 are just as hard as F

Divide&Conquer becomes Multiply&Surrender!
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The Cube&Conquer paradigm (Heule & Biere, 2011)
Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

Unlikely that any of the workers will run out tasks
⇒ Hope of good load balancing in practice

Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

Best performance mostly with problem-specific decision heuristics
State-of-the-art for hard combinatorial problems

Used to solve the “Pythagorean Triples” problem (∼200TB proof)
... or more recently “Schur Number 5” (∼2PB proof)

Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)
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The Assembly of Nerds
Complex and large logic puzzle

n puzzle experts at your disposition
— individual mindsets, approaches,

strengths & weaknesses
— anti-social: work best if left undisturbed

How do we employ and “orchestrate” our experts?
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Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable
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ppfolio: Winner of Parallel Track in the 2011 SAT Competition
Just a bash script combining the best sequential solvers from 2010:
˜$ ./solver1 f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solver4 f.cnf

Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

Pure portfolios no longer permitted in SAT Competitions
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6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)
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Assembly of Nerds, enhanced
The experts periodically gather for brief standup meetings

Via some protocol, the experts exchange the most valuable insights gained since the last meeting

Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:

learnt (conflict) clauses

Explored branch of search space — safe to prune

Potential step for deriving unsatisfiability
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Portfolio considerations
Which sequential solvers to employ?
How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .
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Portfolio considerations

Which sequential solvers to employ?

How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .

Clause exchange considerations

How often to share? (immediate/eager? delayed/lazy? periodic?)

How many clauses to share? (fixed volume? fixed quality criteria?)

Which clauses to share? (shortest? lowest LBD?)

How to implement sharing? (all-to-all? leader-worker? some communication graph?)
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ManySAT (Hamadi, Jabbour, and Sais 2009)
Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, . . .

Eager exchange of clauses of length ≤ 8 via lockless queues

Plingeling (Biere 2010)
Portfolio over Lingeling configurations (shared-memory parallelism)

Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length ≤ 40, LBD ≤ 8

Best parallel solver for many years
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Distributed computing

In distributed computing, several machines
(with no shared main memory) run together.
On each machine we run a number of processes,
each of which runs on a number of cores.
Processes commonly communicate by exchanging messages. SuperMUC-NG: 6 336 nodes × 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:

No shared memory — communication protocols required

Diminishing returns due to exhausted diversification of solvers
Some exchange schemes are conceptually not scalable

“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders
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Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:

No shared memory — communication protocols required

Diminishing returns due to exhausted diversification of solvers
Some exchange schemes are conceptually not scalable

“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders
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HordeSat (Balyo, Sanders, Sinz 2015)
Decentralization: No single leader node / process

Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds

Periodic all-to-all clause exchange
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Super-linear speedups for individual instances
= speedup > c on c cores!

— SAT: “NP luck” – some solver got lucky
— UNSAT: distributed memory accommodates
— more clauses than any sequential solver

Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ≈ 2.2%
— Deploying HordeSat is often not worth it

No improvement beyond ≈ 500 cores
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Research Question
How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob
Mallob is a platform for SAT solving (and other NP-hard problems) with:

multi-user, on-demand, malleable scheduling and solving of many problems at once

the HordeSat paradigm re-engineered and made efficient

state-of-the-art SAT performance from dozens to thousands of cores
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Succinct clause sharing

+ duplicate detection

Global and adaptive
admission criteria

Distributed clause
filtering

Diversification
Glucose, Lingeling,
CaDiCaL, Kissat

Clause shuffling

Noisy parameters

Memory Awareness
Reduction of

memory panic
Negotiated

solver threads

Adaptive buffering
Keep best clauses
at expense of
worse clauses

For export + import

Hierarchical merging

Controlling
Subprocess for solvers

Seamless preemption
and termination

Fault tolerance

Exact filtering
of clauses
shared before

MPI

/ from self
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Engineering a Scalable SAT Solver



Periodic collective operation AllGather

Locally best clauses are shared with everyone

Duplicate clauses

“Holes” in buffer carrying no information

Buffer grows proportionally with # proc.
⇒ Bottleneck w.r.t communication and local work

a

b

c

d

e

f

g

b

c

f

a
e
h

d

c

d

i c

MPI
AllGather

PEs

clause

e

f

g

b

c

f

a
e
h

d

c

d

i

c

buffers

a

b

c

d

Exported

Import clauses to solvers

25/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in HordeSat



Custom collective operation [SAT’21]

Aggregate information along
binary tree of processors

Detect duplicates during merge

Result is of compact shape

Sublinear buffer size growth:
Discard longest clauses as necessary

Observations
Clause needs to meet global quality
threshold to be shared successfully

Quality threshold adapts to state of solving

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Three-way merge

a i e h c b d f g

Broadcast

1.

2.

(space-limited)
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The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [HordeSat] [SAT’21]

Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [ISC’22]

Process p remembers clauses it exported itself
and tags their producing solver(s)

Aggregate bit vector v where
v [i] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i] = false

Compensate for filtered clauses next sharing!

a i e h c b d f g

Broadcast

1.

2.
a i e h c b d f g

Bitwise OR
aggregation
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Clause quality metric, central for whether to keep a clause

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

Use original LBD values of imported clauses? [HordeSat]
⇒ Growing overhead (time, space) from low-LBD clauses

Reset LBD values to maximum at import? [TopoSAT2]
⇒ Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps full control over its LBD-2-clauses

“Regional clauses are the best!”

2 3 |c|. . .

LBD

LBD′

Median RAM PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s
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Merit of Diverse Portfolio, SAT vs. UNSAT
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× 300 s, portfolio “KCL”, with clause sharing!

“full”: 36 solver configs + random seeds
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768 cores × 349 “solvable” instances from ISC 2022
× 300 s, portfolio “KCL”

, with clause sharing!

“full”: 36 solver configs + random seeds
+ noisy parameters + input permutation
+ a few solvers not importing clauses

“none”: 36 solver configs, nothing else

Without clause sharing diversification helps a lot!

Clause sharing appears to absorb common
diversification techniques! How?

Hypothesis:
1 Shared clauses arrive at solvers at different times
2 Solvers vary in when (and what) they import
3 “Butterfly effect”
4 Clause sharing as search space pruning:

solvers won’t re-explore pruned branches!
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Updated HordeSat
(Lingeling)

vs.

Mallob
(Kissat-CaDiCaL-Lingeling)

Sat Comp. 2021 benchmarks

Sequential baseline:
Kissat_MAB_HyWalk

Seq. time limit: 115200 s
Par. time limit: 300 s 96 384 768 1536 3072
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32× speedup @ 1000 s
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+59% solved

Med. speedup (solved by both): 16.2
Med. speedup (Tseq ≤ 5000 s): 21
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Massive parallelism for a single formula

Faster solving times

Can resolve problems out of reach for sequential solvers

Not that resource efficient (on average)

Solving many formulas in parallel

Embarrassingly parallel

Solving itself less powerful

Best of both worlds? [EuroPar’22]

On demand scheduling of incoming (SAT) jobs

Resize jobs during their execution as needed

Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

F1 F2

F3
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Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.
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Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Extreme 1: 400 Kissats in a trenchcoat

No intra-job parallelism

Embarrassingly parallel job processing
(inter-job parallelism)

Great resource efficiency
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Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Extreme 2: Massively parallel solving of each job

One job at a time

Assumption: Optimal Offline Schedule (OOS)
— instances sorted by run time ascendingly

No inter-job parallelism

Maximum speedups from parallel SAT

Poor resource efficiency
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Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Middle ground 1: Divide cores evenly among jobs

Solid speedups at low-degree parallel SAT

At the beginning, all cores are used

After < 15 min, < 50% of cores are used
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Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Middle ground 2: Divide cores dynamically among jobs

Finishing jobs yield resources to remaining jobs
— eventually exceeding 4× their initial resources

Uses 100% of resources 100% of the time

At 400 cores: Dominates 400× Kissat!
— shows low overhead of scheduling

0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

Mall 1600×4

Rigid 1600×4

Mall 400×4

Rigid 400×4

Mall 400×1

400×Kissat

OOS 1536 c.

OOS 384 c.

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores



36/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Mallob: Harvest



Issue
Parallel clause-sharing solvers do not support the production of unsatisfiability proofs.

Real, practical issue
Some competition results of cloud solvers proved to be incorrect later!
Growing scale of computation ⇒ Growing probability of failures

Prior approaches unsatisfactory
Limited to single machine
Not scalable at all

Objective
Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.
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TACAS’23: UNSAT Proofs for Distributed Solvers



Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

Portfolio of different CDCL solver configurations
≈ producers of conflict clauses
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Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

. . . . . .Clause sharing
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Process #1 Process #2

S1 S2

S3 S4

S5 S6
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DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?
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S1 S2

S4S3

10 original clauses

11 15 19
+4 +4
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S1 S2
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16
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20

21 22
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1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof
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Trace dependencies
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Redistribute remote IDs
at epoch borders
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Hierarchically merge pruning output
along tree of processors

Root processor
1 adds approximated “delete” lines
2 writes stream into file
3 reverses file

communication
Buffered
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Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f
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Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive ⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.
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Takeaways
Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio
All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself
Exploit embarrassingly parallel job processing for interactive solving & best efficiency
Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

Recent and ongoing work
Distributed incremental SAT solving with Mallob
QBF solving with Mallob

https://github.com/domschrei/mallob
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Scaling Experiments (2021)



0 200 400 600 800 1,000
0

100

200

300

wallclock time

so
lv
ed

in
st
an

ce
s
(A

L
L
)

mallob-mono TopoSAT2 Slime
paracooba CTSAT paracooba-march

54/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2020 (Cloud Track)



MallobHC: mixed solver portfolio

VBS of all Main track solvers solved
325 instances within 5000 s
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SAT Competition 2021 (Cloud Track)


