
Practical SAT Solving

Lecture 9: Parallel SAT Solving

T. Balyo, M. Iser, D. Schreiber | May 13, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Parallel SAT solving approaches

Basic search space splitting

Clause sharing

Cube&Conquer

Portfolio solvers (without and with clause sharing)

A deep dive into Mallob

Overview

Scalable clause sharing

Experiments and results

2/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Outline

The Assembly of Nerds
Complex and large logic puzzle

n puzzle experts at your disposition

How do we employ and “orchestrate” our experts?

3 9
7 3

6 8
9

4 5
4 9
8 3 5 9 2

3 6
9 6
7
2 8

6 8
3 8

3/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Parallel Portfolios: An analogy

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

1 2 3

4 5 6

7 8 9

Partition search space at some
decisions
⇒ Independent subproblems

4/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach I: Search Space Partitioning

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

1 2 3

4 5 6

7 8 9

Partition search space at some
decisions
⇒ Independent subproblems

4/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach I: Search Space Partitioning

1st Parallel DPLL Implementation by Böhm & Speckenmeyer (1994)

Explicit Load Balancing
Completely distributed (no leader / worker roles)

A list of partial assignments is generated

Each process receives the entire formula and a few partial assignments
Each process can be worker or balancer:

Worker: solve or split the formula, use the partial assignments
Balancer: estimate workload, communicate, stop

Switch to balancer whenever worker is finished

5/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Explicit Partitioning

“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al., 1996

Centralized leader-worker architecture
Communication only between leader and workers
Leader assigns partial assignments using Guiding Path

Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
Leader splits open nodes and assigns job to workers

Workers return Guiding Path when terminated by leader

Modern features of fault tolerance, preemption of solving tasks

6/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Explicit Partitioning

Guiding Path: List of triples (variable, branch, open)

x1

x6

x4

x2

1 0

0 1

01

10

?〈
(x1, 0, 0), (x6, 1, 0), (x4, 1, 1), (x2, 0, 0)

〉

7/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Explicit Partitioning

SATZ (Jurkowiak et al., 2001) improves PSATO

Work stealing for workload balancing
An idle worker requests work from the leader

The leader splits the work of the most loaded worker

The idle worker and most loaded worker get the parts

8/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Explicit Partitioning

PaSAT (Blochinger et al., 2001)
First parallel CDCL with clause sharing

Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004)
First shared-memory parallel solver

Multi-core processors started to be popular

uses same techniques as the previous solvers (guiding path etc.)

... and many many more similar solvers

9/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Sharing Parallel Solvers

F

x = 0 x = 1

F|x=0 F|x=1

Health bar

What we want: Even splits

Split yields sub-formulas of similar difficulty

Balanced partitioning of work

Few or no dynamic (re-)balancing needed

Uneven splits

One subformula is trivial, the other is just as hard as F

Ping-pong effect for workers processing trivial formulae,
communication / synchronization dominates run time

Bogus splits

Both F|x=0 and F|x=1 are just as hard as F

Divide&Conquer becomes Multiply&Surrender!

10/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Problems with Partitioning

F

x = 0 x = 1

F|x=0 F|x=1

What we want: Even splits

Split yields sub-formulas of similar difficulty

Balanced partitioning of work

Few or no dynamic (re-)balancing needed

Uneven splits

One subformula is trivial, the other is just as hard as F

Ping-pong effect for workers processing trivial formulae,
communication / synchronization dominates run time

Bogus splits

Both F|x=0 and F|x=1 are just as hard as F

Divide&Conquer becomes Multiply&Surrender!

10/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Problems with Partitioning

F

x = 0 x = 1

F|x=0 F|x=1

What we want: Even splits

Split yields sub-formulas of similar difficulty

Balanced partitioning of work

Few or no dynamic (re-)balancing needed

Uneven splits

One subformula is trivial, the other is just as hard as F

Ping-pong effect for workers processing trivial formulae,
communication / synchronization dominates run time

Bogus splits

Both F|x=0 and F|x=1 are just as hard as F

Divide&Conquer becomes Multiply&Surrender!

10/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Problems with Partitioning

The Cube&Conquer paradigm (Heule & Biere, 2011)
Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

Unlikely that any of the workers will run out tasks
⇒ Hope of good load balancing in practice

Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

Best performance mostly with problem-specific decision heuristics
State-of-the-art for hard combinatorial problems

Used to solve the “Pythagorean Triples” problem (∼200TB proof)
... or more recently “Schur Number 5” (∼2PB proof)

Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)
Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

Unlikely that any of the workers will run out tasks
⇒ Hope of good load balancing in practice

Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

Best performance mostly with problem-specific decision heuristics

State-of-the-art for hard combinatorial problems
Used to solve the “Pythagorean Triples” problem (∼200TB proof)
... or more recently “Schur Number 5” (∼2PB proof)

Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011)
Generate a large amount (millions) of partial assignments (“cubes”)
and randomly assign them to workers.

Unlikely that any of the workers will run out tasks
⇒ Hope of good load balancing in practice

Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

Best performance mostly with problem-specific decision heuristics
State-of-the-art for hard combinatorial problems

Used to solve the “Pythagorean Triples” problem (∼200TB proof)
... or more recently “Schur Number 5” (∼2PB proof)

Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere)

11/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Cube and Conquer

The Assembly of Nerds
Complex and large logic puzzle

n puzzle experts at your disposition
— individual mindsets, approaches,

strengths & weaknesses
— anti-social: work best if left undisturbed

How do we employ and “orchestrate” our experts?

3 9
7 3

6 8
9

4 5
4 9
8 3 5 9 2

3 6
9 6
7
2 8

6 8
3 8

12/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Parallel Portfolios: An analogy

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II: Pure Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II: Pure Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

1

1
1

1

1
1

1
1

1

2

2
2

2

2
2

23

3

4
4

4

4
4

5
5

5
5
5

5

8
8

8

7

7
7

7

7
7

6
9 3

7
85

9 4

3 9
9 6

1

13/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II: Pure Portfolio

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle
Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi (x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup
Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable

14/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure Portfolio: Oracle view vs. Speedup view

ppfolio: Winner of Parallel Track in the 2011 SAT Competition
Just a bash script combining the best sequential solvers from 2010:
˜$./solver1 f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solver4 f.cnf

Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

Pure portfolios no longer permitted in SAT Competitions

15/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure SAT Portfolios

ppfolio: Winner of Parallel Track in the 2011 SAT Competition
Just a bash script combining the best sequential solvers from 2010:
˜$./solver1 f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solver4 f.cnf

Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

Pure portfolios no longer permitted in SAT Competitions

15/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Pure SAT Portfolios

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II+: Cooperative Portfolio

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II+: Cooperative Portfolio

6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II+: Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

16/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Approach II+: Cooperative Portfolio

Assembly of Nerds, enhanced
The experts periodically gather for brief standup meetings

Via some protocol, the experts exchange the most valuable insights gained since the last meeting

Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:

learnt (conflict) clauses

Explored branch of search space — safe to prune

Potential step for deriving unsatisfiability

17/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Cooperative Portfolio

Assembly of Nerds, enhanced
The experts periodically gather for brief standup meetings

Via some protocol, the experts exchange the most valuable insights gained since the last meeting

Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses

Explored branch of search space — safe to prune

Potential step for deriving unsatisfiability

17/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Cooperative Portfolio

Portfolio considerations
Which sequential solvers to employ?
How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .

18/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Sharing Portfolios: Design Space

Portfolio considerations

Which sequential solvers to employ?

How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .

Clause exchange considerations

How often to share? (immediate/eager? delayed/lazy? periodic?)

How many clauses to share? (fixed volume? fixed quality criteria?)

Which clauses to share? (shortest? lowest LBD?)

How to implement sharing? (all-to-all? leader-worker? some communication graph?)

18/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Sharing Portfolios: Design Space

ManySAT (Hamadi, Jabbour, and Sais 2009)
Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, . . .

Eager exchange of clauses of length ≤ 8 via lockless queues

Plingeling (Biere 2010)
Portfolio over Lingeling configurations (shared-memory parallelism)

Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length ≤ 40, LBD ≤ 8

Best parallel solver for many years

19/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009)
Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, . . .

Eager exchange of clauses of length ≤ 8 via lockless queues

Plingeling (Biere 2010)
Portfolio over Lingeling configurations (shared-memory parallelism)

Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length ≤ 40, LBD ≤ 8

Best parallel solver for many years

19/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Early Clause Sharing Portfolios

Distributed computing

In distributed computing, several machines
(with no shared main memory) run together.
On each machine we run a number of processes,
each of which runs on a number of cores.
Processes commonly communicate by exchanging messages. SuperMUC-NG: 6 336 nodes × 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:

No shared memory — communication protocols required

Diminishing returns due to exhausted diversification of solvers
Some exchange schemes are conceptually not scalable

“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Massively parallel hardware?

Distributed computing

In distributed computing, several machines
(with no shared main memory) run together.
On each machine we run a number of processes,
each of which runs on a number of cores.
Processes commonly communicate by exchanging messages. SuperMUC-NG: 6 336 nodes × 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:

No shared memory — communication protocols required

Diminishing returns due to exhausted diversification of solvers

Some exchange schemes are conceptually not scalable
“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Massively parallel hardware?

Distributed computing

In distributed computing, several machines
(with no shared main memory) run together.
On each machine we run a number of processes,
each of which runs on a number of cores.
Processes commonly communicate by exchanging messages. SuperMUC-NG: 6 336 nodes × 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:

No shared memory — communication protocols required

Diminishing returns due to exhausted diversification of solvers
Some exchange schemes are conceptually not scalable

“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

20/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Massively parallel hardware?

HordeSat (Balyo, Sanders, Sinz 2015)
Decentralization: No single leader node / process

Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds

Periodic all-to-all clause exchange

21/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015)
Decentralization: No single leader node / process

Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds

Periodic all-to-all clause exchange

21/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Massively parallel SAT portfolio

Super-linear speedups for individual instances
= speedup > c on c cores!

— SAT: “NP luck” – some solver got lucky
— UNSAT: distributed memory accommodates
— more clauses than any sequential solver

Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ≈ 2.2%
— Deploying HordeSat is often not worth it

No improvement beyond ≈ 500 cores
0 250 500 750

Run time t (s)

0

200

400

#
in

st
an

ce
s

so
lv

ed
in
≤
t

2048c.

512c.

128c.

32c.

Lingeling

Data extracted from HordeSat paper

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

HordeSat: Results

Super-linear speedups for individual instances
= speedup > c on c cores!
— SAT: “NP luck” – some solver got lucky
— UNSAT: distributed memory accommodates
— more clauses than any sequential solver

Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ≈ 2.2%
— Deploying HordeSat is often not worth it

No improvement beyond ≈ 500 cores
0 250 500 750

Run time t (s)

0

200

400

#
in

st
an

ce
s

so
lv

ed
in
≤
t

2048c.

512c.

128c.

32c.

Lingeling

Data extracted from HordeSat paper

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

HordeSat: Results

Super-linear speedups for individual instances
= speedup > c on c cores!
— SAT: “NP luck” – some solver got lucky
— UNSAT: distributed memory accommodates
— more clauses than any sequential solver

Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ≈ 2.2%
— Deploying HordeSat is often not worth it

No improvement beyond ≈ 500 cores
0 250 500 750

Run time t (s)

0

200

400

#
in

st
an

ce
s

so
lv

ed
in
≤
t

2048c.

512c.

128c.

32c.

Lingeling

Data extracted from HordeSat paper

22/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

HordeSat: Results

Research Question
How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob
Mallob is a platform for SAT solving (and other NP-hard problems) with:

multi-user, on-demand, malleable scheduling and solving of many problems at once

the HordeSat paradigm re-engineered and made efficient

state-of-the-art SAT performance from dozens to thousands of cores

23/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

From HordeSat to Mallob

Research Question
How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob
Mallob is a platform for SAT solving (and other NP-hard problems) with:

multi-user, on-demand, malleable scheduling and solving of many problems at once

the HordeSat paradigm re-engineered and made efficient

state-of-the-art SAT performance from dozens to thousands of cores

23/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

From HordeSat to Mallob

Succinct clause sharing

+ duplicate detection

Global and adaptive
admission criteria

Distributed clause
filtering

Diversification
Glucose, Lingeling,
CaDiCaL, Kissat

Clause shuffling

Noisy parameters

Memory Awareness
Reduction of

memory panic
Negotiated

solver threads

Adaptive buffering
Keep best clauses
at expense of
worse clauses

For export + import

Hierarchical merging

Controlling
Subprocess for solvers

Seamless preemption
and termination

Fault tolerance

Exact filtering
of clauses
shared before

MPI

/ from self

24/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Engineering a Scalable SAT Solver

Periodic collective operation AllGather

Locally best clauses are shared with everyone

Duplicate clauses

“Holes” in buffer carrying no information

Buffer grows proportionally with # proc.
⇒ Bottleneck w.r.t communication and local work

a

b

c

d

e

f

g

b

c

f

a
e
h

d

c

d

i c

MPI
AllGather

PEs

clause

e

f

g

b

c

f

a
e
h

d

c

d

i

c

buffers

a

b

c

d

Exported

Import clauses to solvers

25/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in HordeSat

Custom collective operation [SAT’21]

Aggregate information along
binary tree of processors

Detect duplicates during merge

Result is of compact shape

Sublinear buffer size growth:
Discard longest clauses as necessary

Observations
Clause needs to meet global quality
threshold to be shared successfully

Quality threshold adapts to state of solving

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Three-way merge

a i e h c b d f g

Broadcast

1.

2.

(space-limited)

26/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in Mallob

Custom collective operation [SAT’21]

Aggregate information along
binary tree of processors

Detect duplicates during merge

Result is of compact shape

Sublinear buffer size growth:
Discard longest clauses as necessary

Observations
Clause needs to meet global quality
threshold to be shared successfully

Quality threshold adapts to state of solving

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Three-way merge

a i e h c b d f g

Broadcast

1.

2.

(space-limited)

26/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Exchange in Mallob

The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [HordeSat] [SAT’21]

Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [ISC’22]

Process p remembers clauses it exported itself
and tags their producing solver(s)

Aggregate bit vector v where
v [i] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i] = false

Compensate for filtered clauses next sharing!

a i e h c b d f g

Broadcast

1.

2.
a i e h c b d f g

Bitwise OR
aggregation

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering

The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [HordeSat] [SAT’21]

Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [ISC’22]

Process p remembers clauses it exported itself
and tags their producing solver(s)

Aggregate bit vector v where
v [i] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i] = false

Compensate for filtered clauses next sharing!

a i e h c b d f g

Broadcast

1.

2.
a i e h c b d f g

Bitwise OR
aggregation

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering

The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [HordeSat] [SAT’21]

Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [ISC’22]

Process p remembers clauses it exported itself
and tags their producing solver(s)

Aggregate bit vector v where
v [i] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i] = false

Compensate for filtered clauses next sharing!

a i e h c b d f g

Broadcast

1.

2.
a i e h c b d f g

Bitwise OR
aggregation

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering

The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [HordeSat] [SAT’21]

Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [ISC’22]

Process p remembers clauses it exported itself
and tags their producing solver(s)

Aggregate bit vector v where
v [i] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i] = false

Compensate for filtered clauses next sharing!

a i e h c b d f g

Broadcast

1.

2.
a i e h c b d f g

Bitwise OR
aggregation

27/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Clause Filtering

Clause quality metric, central for whether to keep a clause

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

Use original LBD values of imported clauses? [HordeSat]
⇒ Growing overhead (time, space) from low-LBD clauses

Reset LBD values to maximum at import? [TopoSAT2]
⇒ Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps full control over its LBD-2-clauses

“Regional clauses are the best!”

2 3 |c|. . .

LBD

LBD′

Median RAM PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values

Clause quality metric, central for whether to keep a clause

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

Use original LBD values of imported clauses? [HordeSat]
⇒ Growing overhead (time, space) from low-LBD clauses

Reset LBD values to maximum at import? [TopoSAT2]
⇒ Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps full control over its LBD-2-clauses

“Regional clauses are the best!”

2 3 |c|. . .

LBD

LBD′

Median RAM PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values

Clause quality metric, central for whether to keep a clause

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!

Use original LBD values of imported clauses? [HordeSat]
⇒ Growing overhead (time, space) from low-LBD clauses

Reset LBD values to maximum at import? [TopoSAT2]
⇒ Many clauses may be discarded very quickly

Our current approach: Increment each LBD before import

Maintains LBD-based prioritization of clauses

Solver keeps full control over its LBD-2-clauses

“Regional clauses are the best!”

2 3 |c|. . .

LBD

LBD′

Median RAM PAR-2
Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s

28/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

LBD Values

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s

Sharing (SAT)

No sharing (SAT)

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
a
n

ce
s

so
lv

ed
in
≤
t
s

Sharing (UNSAT)

No sharing (UNSAT)

768 cores × 349 “solvable” instances from ISC 2022 × 300 s, portfolio “KCLG”

29/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Clause Sharing, SAT vs. UNSAT

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

KCLG (SAT)

L (SAT)

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

KCLG (UNSAT)

L (UNSAT)

768 cores × 349 “solvable” instances from ISC 2022 × 300 s, with clause sharing

30/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diverse Portfolio, SAT vs. UNSAT

100 200 300

Run time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

full

none

768 cores × 349 “solvable” instances from ISC 2022
× 300 s, portfolio “KCL”, with clause sharing!

“full”: 36 solver configs + random seeds
+ noisy parameters + input permutation
+ a few solvers not importing clauses

“none”: 36 solver configs, nothing else

31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification . . . None??

100 200 300

Run time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

full div. + sharing

no div. + sharing

full div., no sharing

no div., no sharing

768 cores × 349 “solvable” instances from ISC 2022
× 300 s, portfolio “KCL”

, with clause sharing!

“full”: 36 solver configs + random seeds
+ noisy parameters + input permutation
+ a few solvers not importing clauses

“none”: 36 solver configs, nothing else

Without clause sharing diversification helps a lot!

Clause sharing appears to absorb common
diversification techniques! How?

Hypothesis:
1 Shared clauses arrive at solvers at different times
2 Solvers vary in when (and what) they import
3 “Butterfly effect”
4 Clause sharing as search space pruning:

solvers won’t re-explore pruned branches!

31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification . . . None??

100 101 102

Run time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s full div. + sharing

no div. + sharing

full div., no sharing

no div., no sharing

768 cores × 349 “solvable” instances from ISC 2022
× 300 s, portfolio “KCL”

, with clause sharing!

“full”: 36 solver configs + random seeds
+ noisy parameters + input permutation
+ a few solvers not importing clauses

“none”: 36 solver configs, nothing else

Without clause sharing diversification helps a lot!

Clause sharing appears to absorb common
diversification techniques! How?
Hypothesis:

1 Shared clauses arrive at solvers at different times
2 Solvers vary in when (and what) they import
3 “Butterfly effect”
4 Clause sharing as search space pruning:

solvers won’t re-explore pruned branches!

31/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Merit of Diversification . . . None??

Updated HordeSat
(Lingeling)

vs.

Mallob
(Kissat-CaDiCaL-Lingeling)

Sat Comp. 2021 benchmarks

Sequential baseline:
Kissat_MAB_HyWalk

Seq. time limit: 115200 s
Par. time limit: 300 s 96 384 768 1536 3072

cores

0

10

20

30

40

50

G
eo

m
et

ri
c

m
ea

n
sp

ee
d

u
p

Mallob (UNSAT)

Mallob (all)

Mallob (SAT)

Horde (UNSAT)

Horde (all)

Horde (SAT)

32/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Scaling and Speedups

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

#
so

lv
ed

in
st

an
ce

s
(t

ot
a
l:

3
5
4)

SAT Competition: Main 2020 ∩ Anni 2022

Mallob-KiCaLiGlu (2022, 800 c.)

Mallob-mono (2020, 800 c.)

Mallob-Ki (2022, 32 c.)

P-MCOMSPS-STR-32 (2020, 32 c.)

Kissat-MAB-ESA (2022, 1 c.)

Kissat-sc2020-sat (2020, 1 c.)

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

#
so

lv
ed

in
st

an
ce

s
(t

ot
a
l:

3
5
4)

SAT Competition: Main 2020 ∩ Anni 2022

Mallob-KiCaLiGlu (2022, 800 c.)

Mallob-mono (2020, 800 c.)

Mallob-Ki (2022, 32 c.)

P-MCOMSPS-STR-32 (2020, 32 c.)

Kissat-MAB-ESA (2022, 1 c.)

Kissat-sc2020-sat (2020, 1 c.)

Med. speedup (solved by both): 16.2
Med. speedup (Tseq ≤ 5000 s): 21

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

#
so

lv
ed

in
st

an
ce

s
(t

ot
a
l:

3
5
4)

SAT Competition: Main 2020 ∩ Anni 2022

Mallob-KiCaLiGlu (2022, 800 c.)

Mallob-mono (2020, 800 c.)

Mallob-Ki (2022, 32 c.)

P-MCOMSPS-STR-32 (2020, 32 c.)

Kissat-MAB-ESA (2022, 1 c.)

Kissat-sc2020-sat (2020, 1 c.)

32× speedup @ 1000 s

(55× @ 5000 s)

Med. speedup (solved by both): 16.2
Med. speedup (Tseq ≤ 5000 s): 21

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

#
so

lv
ed

in
st

an
ce

s
(t

ot
a
l:

3
5
4)

SAT Competition: Main 2020 ∩ Anni 2022

Mallob-KiCaLiGlu (2022, 800 c.)

Mallob-mono (2020, 800 c.)

Mallob-Ki (2022, 32 c.)

P-MCOMSPS-STR-32 (2020, 32 c.)

Kissat-MAB-ESA (2022, 1 c.)

Kissat-sc2020-sat (2020, 1 c.)

32× speedup @ 1000 s

(55× @ 5000 s)

+59% solved

Med. speedup (solved by both): 16.2
Med. speedup (Tseq ≤ 5000 s): 21

33/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2022

Massive parallelism for a single formula

Faster solving times

Can resolve problems out of reach for sequential solvers

Not that resource efficient (on average)

Solving many formulas in parallel

Embarrassingly parallel

Solving itself less powerful

Best of both worlds? [EuroPar’22]

On demand scheduling of incoming (SAT) jobs

Resize jobs during their execution as needed

Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

F1 F2

F3

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Better Efficiency?

Massive parallelism for a single formula

Faster solving times

Can resolve problems out of reach for sequential solvers

Not that resource efficient (on average)

Solving many formulas in parallel

Embarrassingly parallel

Solving itself less powerful

Best of both worlds? [EuroPar’22]

On demand scheduling of incoming (SAT) jobs

Resize jobs during their execution as needed

Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

F1 F2

F3

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Better Efficiency?

Massive parallelism for a single formula

Faster solving times

Can resolve problems out of reach for sequential solvers

Not that resource efficient (on average)

Solving many formulas in parallel

Embarrassingly parallel

Solving itself less powerful

Best of both worlds? [EuroPar’22]

On demand scheduling of incoming (SAT) jobs

Resize jobs during their execution as needed

Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

F1 F2

F3

34/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Better Efficiency?

Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

400×Kissat

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Extreme 1: 400 Kissats in a trenchcoat

No intra-job parallelism

Embarrassingly parallel job processing
(inter-job parallelism)

Great resource efficiency

0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

400×Kissat

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Extreme 2: Massively parallel solving of each job

One job at a time

Assumption: Optimal Offline Schedule (OOS)
— instances sorted by run time ascendingly

No inter-job parallelism

Maximum speedups from parallel SAT

Poor resource efficiency
0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

400×Kissat

OOS 1536 c.

OOS 384 c.

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Middle ground 1: Divide cores evenly among jobs

Solid speedups at low-degree parallel SAT

At the beginning, all cores are used

After < 15 min, < 50% of cores are used

0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

Rigid 1600×4

Rigid 400×4

400×Kissat

OOS 1536 c.

OOS 384 c.

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

Problem statement
You allocate x ∈ {400, 1600, 6400} cores for 2 h.
You have 400 formulae (SAT Comp. ’21) to solve. Go.

Middle ground 2: Divide cores dynamically among jobs

Finishing jobs yield resources to remaining jobs
— eventually exceeding 4× their initial resources

Uses 100% of resources 100% of the time

At 400 cores: Dominates 400× Kissat!
— shows low overhead of scheduling

0 1800 3600 5400 7200

Total run time [s]

0

50

100

150

200

250

300

350

#
fi

n
is

h
ed

jo
b

s

Mall 1600×4

Rigid 1600×4

Mall 400×4

Rigid 400×4

Mall 400×1

400×Kissat

OOS 1536 c.

OOS 384 c.

35/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Solving 400 Formulae on up to 6400 Cores

36/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Mallob: Harvest

Issue
Parallel clause-sharing solvers do not support the production of unsatisfiability proofs.

Real, practical issue
Some competition results of cloud solvers proved to be incorrect later!
Growing scale of computation ⇒ Growing probability of failures

Prior approaches unsatisfactory
Limited to single machine
Not scalable at all

Objective
Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.

37/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

TACAS’23: UNSAT Proofs for Distributed Solvers

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

Portfolio of different CDCL solver configurations
≈ producers of conflict clauses

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

.Clause sharing

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

38/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Background: Distributed Clause-Sharing SAT Solving

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19
+4 +4

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12 16 20
+4 +4

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12

13

16

17

20

21

+4 +4

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add □Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := □ via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12

13 14

16

17 18

20

21 22

+4 +4

39/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Which Proof Format?

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

110135 108

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

110135 108

X
137

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line ⇔ all dependencies d output

2. Pruning

Required clauses R := {id(□)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

40/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

A Sequential Approach

Epoch 0

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

41/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Schematic Overview

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

— Derived clause IDs →

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

42/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Pruning: Real Data

Hierarchically merge pruning output
along tree of processors

Root processor
1 adds approximated “delete” lines
2 writes stream into file
3 reverses file

communication
Buffered

43/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Distributed Combination

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PF ′

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PostprocessingPF ′ PF

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PostprocessingPF ′ PF Checking

f

44/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (1/2)

Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive ⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.

45/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (2/2)

Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive ⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.

45/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Experimental Setup (2/2)

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[64×] baseline (Parkissat-rs)

[1×] baseline (Kissat MAB-HyWalk)

46/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Solving Times

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[1600×] ours without LRAT logging

[64×] baseline (Parkissat-rs)

[64×] ours without LRAT logging

[1×] baseline (Kissat MAB-HyWalk)

46/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Solving Times

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[1600×] ours without LRAT logging

[1600×] ours

[64×] baseline (Parkissat-rs)

[64×] ours without LRAT logging

[64×] ours

[1×] baseline (Kissat MAB-HyWalk)

46/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Solving Times

How large are the resulting proofs?

HMP64 S64 P64 P1600

20

40

60

80

P
ro

of
si

ze
(G

B
)

(139) (139) (135) (154)

5

How fast can we check the proofs?

Kissat HMP64 S64 P64 P1600

10

20

30

40

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(99) (81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

47/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Proof Output

How large are the resulting proofs?

HMP64 S64 P64 P1600

20

40

60

80

P
ro

of
si

ze
(G

B
)

(139) (139) (135) (154)

5

How fast can we check the proofs?

Kissat HMP64 S64 P64 P1600

10

20

30

40

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(99) (81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

47/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Proof Output

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Overhead

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Overhead

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

48/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Evaluation: Overhead

Takeaways
Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio
All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself
Exploit embarrassingly parallel job processing for interactive solving & best efficiency
Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

Recent and ongoing work
Distributed incremental SAT solving with Mallob
QBF solving with Mallob

https://github.com/domschrei/mallob

49/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Conclusion

Takeaways
Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio
All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— huge for unsatisfiable, nice-to-have for satisfiable problems
— diversifies solvers effectively in and of itself
Exploit embarrassingly parallel job processing for interactive solving & best efficiency
Emitting proofs of unsatisfiability is nontrivial and requires careful engineering

Recent and ongoing work
Distributed incremental SAT solving with Mallob
QBF solving with Mallob

https://github.com/domschrei/mallob

49/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Conclusion

Publications
Balyo, T., Sanders, P., & Sinz, C. (2015). Hordesat: A massively parallel portfolio SAT solver. In Theory and Applications of Satisfiability
Testing–SAT 2015: 18th International Conference, 2015, Proceedings 18 (pp. 156-172).
Biere, A. (2010). Lingeling, Plingeling, Picosat and Precosat at SAT race 2010.
Ehlers, T., & Nowotka, D. (2019). Tuning parallel sat solvers. Proceedings of Pragmatics of SAT, 59, 127-143.
Hamadi, Y., Jabbour, S., & Sais, L. (2010). ManySAT: a parallel SAT solver. Journal on Satisfiability, Boolean Modeling and Computation,
6(4), 245-262.
Michaelson, D., Schreiber, D., Heule, M. J., Kiesl-Reiter, B., & Whalen, M. W. (2023). Unsatisfiability proofs for distributed
clause-sharing SAT solvers. In Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems (TACAS) (pp. 348-366).
Roussel, O. (2012). Description of ppfolio (2011). Proc. SAT Challenge, 46.
Sanders, P., & Schreiber, D. (2022,). Decentralized online scheduling of malleable NP-hard jobs. In Euro-Par 2022: Parallel Processing:
28th International Conference on Parallel and Distributed Computing, 2022, Proceedings (pp. 119-135).
Schreiber, D. (2022). Mallob in the SAT competition 2022. Proc. SAT Competition, 38.
Schreiber, D., & Sanders, P. (2021). Scalable SAT solving in the cloud. In Theory and Applications of Satisfiability Testing–SAT 2021:
24th International Conference, 2021, Proceedings 24 (pp. 518-534).

External images
Slide 12, SuperMUC-NG: https://doku.lrz.de/files/10745965/10745966/1/1684599593177/image2019-11-15_12-48-5.png
Slide 23, “They’re the same picture.” meme:
https://cdn.eldeforma.com/wp-content/uploads/2020/08/theyre-the-same-picture-pam-the-office-meme-1024x580.png

50/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

References

https://doku.lrz.de/files/10745965/10745966/1/1684599593177/image2019-11-15_12-48-5.png
https://cdn.eldeforma.com/wp-content/uploads/2020/08/theyre-the-same-picture-pam-the-office-meme-1024x580.png

System Libraries
Message Passing Interface · Multithreading and Concurrency · Inter-Process Communication

Mallob Core

Hardware · Firmware · Operating System

Message handler · Basic communication protocols · Data serialization · System diagnostics

Worker Module Client Module
Scheduling protocol · Load balancing · Job database Job queue · Worker communication

Application Interface
Job tree protocol · Internal communication · Deployment

Mallob SAT Engine
Clause sharing · Incremental wrapper

Li
ng

el
in

g

G
lu

co
se

C
aD

iC
aL

Solver Interfaces

applications

M
er

ge
S

AT

M
al

lo
b

JSON Interface
File watching · Job parsing

IPASIR bridge

Incremental SAT
applications

Fu
rt

he
r

so
lv

er
s

Further
interfaces

Further

51/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Mallob

0 20 40

Run time [s]

0

1000

2000

3000

4000

5000

6000

#
li
te

ra
ls

in
d

is
ti

n
ct

sh
ar

ed
cl

a
u

se
s

Div., sharing

No div., sharing

Div., no sharing

No div., no sharing

4× default-configured Lingeling, random 3-SAT @ PT, 400 vars, no unused volume compensation

52/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Sharing vs. diversification

Mallob-monoAnyLBD
sublin vs. HordeSatnew

Speedups
Instance F solved by parallel approach
⇒ Par. run time Tpar (F) ≤ 300 s
⇒ Seq. run time Tseq(F) ≤ 50 000 s

(Tseq(F) := 50 000 s if unsolved)

Total speedup Stot :∑
F Tseq(F) /

∑
F Tpar (F)

Median speedup Smed :
medianF{Tseq(F)/Tpar (F)} 12 40 160 640 2560

cores (log. scale)

0

50

100

150

200

250

300

S
p

ee
d

u
p

ov
er

se
q
.

L
in

ge
li

n
g

Stot(M)

Stot(H)

Smed(M)

Smed(H)

53/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

Scaling Experiments (2021)

0 200 400 600 800 1,000
0

100

200

300

wallclock time

so
lv
ed

in
st
an

ce
s
(A

L
L
)

mallob-mono TopoSAT2 Slime
paracooba CTSAT paracooba-march

54/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2020 (Cloud Track)

MallobHC: mixed solver portfolio

VBS of all Main track solvers solved
325 instances within 5000 s

55/50 2024-05-13 Balyo, Iser, Schreiber: Practical SAT Solving ITI Sanders

SAT Competition 2021 (Cloud Track)

