

Practical SAT Solving

Lecture 6

Markus Iser, Dominik Schreiber, Tomáš Balyo | May 27, 2024

Overview

Recap.

Lecture 4: Classic Heuristics and Modern SAT Solving 1:

- · Decision Heuristics, Restart Strategies, Phase Saving
- Modern SAT Solving 1: Conflict Analysis / Clause Learning

Lecture 5: Parallel SAT Solving 1:

To continued on June 10, 2024: Parallel SAT Solving 2

Today's Topic: Modern SAT Solving 2

- Efficient Unit Propagation
- Clause Forgetting
- Modern Decision Heuristics
- · Preprocessing

Conflict-driven Clause Learning (CDCL) Algorithm

Last Time

- Classic Decision Heuristics
- Restart Strategies
- Clause Learning
- Non-Chronological Backtracking

Today

- Efficient Unit Propagation
- Clause Forgetting
- Modern Decision Heuristics
- Preprocessing

Algorithm 1: CDCL(CNF Formula F, &Assignment $A \leftarrow \emptyset$)

- 1 if not PREPROCESSING then return UNSAT
- 2 while A is not complete do

```
IINTT PROPAGATION
3
```

if A falsifies a clause in F then

if decision level is 0 then return UNSAT

 $(clause, level) \leftarrow CONFLICT-ANALYSIS$

add clause to F and backtrack to level

else

11

12

10

if RESTART then, backtrack to level 0

if CLEANUP then forget some learned clauses

continue

BRANCHING

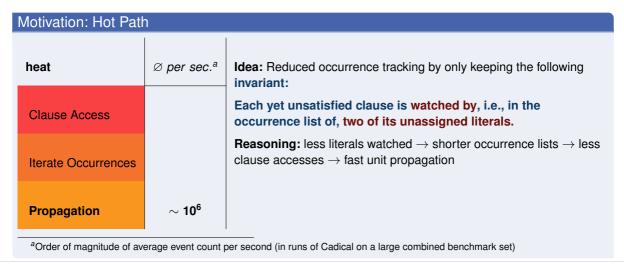
13 return SAT

Hot Paths in CDCL	Solvers	
heat	∅ per sec.ª	
Clause Access		Unpredictable memory access: most expensive
Iterate Occurrences		Predictable memory access: array of pointers (hardware prefetching)
Propagation	\sim 10 6	Access occurrence-list of yet unpropagated literal
Decision	$\sim 10^3$	
Conflict	$\sim 10^3$	Learn a clause $ o$ more to check for propagation
Restart	$\sim 10^{-1}$	
Cleanup		Forget some learned clauses $ ightarrow$ less to check for propagation
20 1 (); 1 (•	

^aOrder of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

Example	e: Unit Pro	opagation	with Full O	ccurrence Lists				
Trail			Occurre	ence Lists	Formula	a		
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	工	а	*1	*1	а	b	С
			$\neg a$	*2 *3	 *2	¬а	b	$\neg c$
			b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3	_			
			С	*3 *1	_			
			$\neg c$	*2	_			

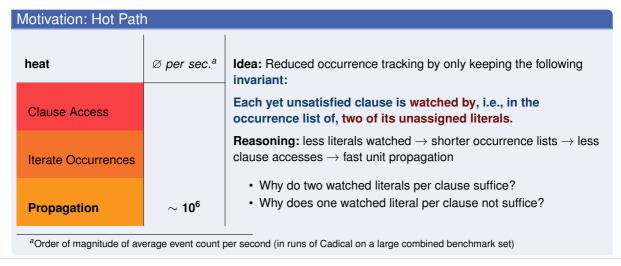
Example	e: Unit Pro	opagation	with Full O	ccurrence Lists				
Trail			Occurre	ence Lists	Formula	a		
level	value	reason	idx.	occurrences	addr.	claus	se	
1	а	工	а	*1	*1	а	b	С
			$\neg a$	*2 *3	*2	¬а	b	$\neg c$
			b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3				
			С	*3 *1				
			$\neg c$	*2				

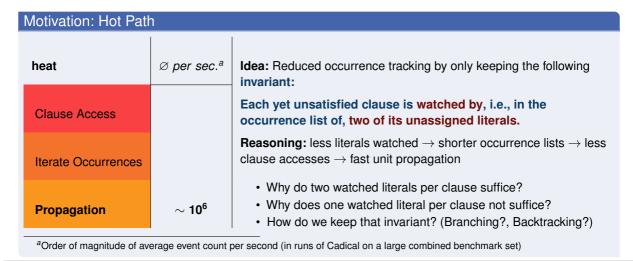


Example	: Unit Pro	opagation	with Full O	ccurrence Lists				
Trail			Occurre	ence Lists	Formula			
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	上	а	*1	*1	а	b	С
2	С	上	$\neg a$	*2 *3	*2	¬а	b	$\neg c$
			b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3				
			С	*3 *1				
			$\neg c$	*2				



Example	: Unit Pro	pagation	with Full O	ccurrence Lists				
Trail			Occurre	ence Lists	Formula			
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	上	а	*1	*1	а	b	С
2	С	上	$\neg a$	*2 *3	*2	¬а	b	$\neg c$
2	b	*2	b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3				
			С	*3 *1				
			$\neg c$	*2				





Markus Iser, Dominik Schreiber, Tomáš Balvo: SAT Solving

Example	e: Unit Pro	opagation	with Two W	/atched	d Literals				
Trail			Two Wa	tched L	iterals_	Formula	3		
level	value	reason	idx.	occui	rences	addr.	claus	е	
			а	*1		*1	а	b	С
			$\neg a$	*2	*3	*2	¬а	b	$\neg c$
			b	*1	*2	*3	¬а	$\neg b$	С
			$\neg b$	*3					
			C						
			$\neg c$						

Example	e: Unit Pro	opagation	with Two W	atched Literals				
Trail			Two Wa	tched Literals	Formula	a		
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	1	а	*1	*1	а	b	С
			$\neg a$	*2 *3	*2	¬а	b	$\neg c$
			b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3				
			С					
			$\neg c$					

Example	e: Unit Pro	opagation	with Two W	/atched Literals				
Trail			Two Wa	tched Literals	Formula	а		
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	Т	а	*1	*1	а	b	С
			$\neg a$	*3	*2	¬ <i>c</i>	b	<i>¬a</i>
			b	*1 *2	*3	¬а	$\neg b$	С
			$\neg b$	*3				
			С					
			$\neg c$	*2				

Example	e: Unit Pro	opagation	with Two W	latched Literals				
Trail		Two Watched Literals			Formula	а		
level	value	reason	idx.	occurrences	addr.	claus	se	
1	а	1	а	*1	*1	а	b	С
			$\neg a$		*2	$\neg c$	b	¬а
			b	*1 *2	*3	С	$\neg b$	$\neg a$
			$\neg b$	*3				
			C	*3				
			$\neg c$	*2				

Example	: Unit Pro	opagation	with Two W	latched Literals				
Trail			Two Wa	tched Literals	Formula	a		
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	上	а	*1	*1	а	b	С
2	С	上	$\neg a$		*2	$\neg c$	b	$\neg a$
			b	*1 *2	*3	С	$\neg b$	$\neg a$
			$\neg b$	*3	=			
			С	*3	=			
			$\neg c$	*2				

Example	: Unit Pro	opagation	with Two W	latched Literals				
Trail			Two Wa	tched Literals	a			
level	value	reason	idx.	occurrences	addr.	claus	e	
1	а	1	а	*1	*1	а	b	С
2	С	上	$\neg a$		*2	$\neg c$	b	¬а
2	b	*2	b	*1 *2	*3	С	$\neg b$	¬а
			$\neg b$	*3				
			С	*3				
			$\neg c$	*2				

Two Watched Literals: Optimizations Invariant: Each yet unsatisfied clause is watched by two of its heat Ø per sec.a unassigned literals. → Reduced Load in Occurrence Tracking Clause Access **Optimization 1:** Keep watched literals the first two in clause → Alternative: Store watched literals in other location Note: What happens if clauses are kept in shared memory for parallel solving? **Iterate Occurrences Optimization 2:** Also keep a literal of each clause directly in occurrence list $\sim 10^6$ **Propagation** → Skip clause access if that literal is satisfied

^aOrder of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

Recap

Unit Propagation

- · Hottest path in CDCL solvers
- Two watched literals per clause suffice for unit propagation (and conflict detection)
- Other optimizations: keep watched literals first in clause, keep a literal of each clause directly in occurrence list

Next Up

Clause Forgetting

Clause Forgetting

Motivation

Clause learning is most important pruning strategy in CDCL solvers.^a

Problem:

- Slows down unit propagation
- Risk of running out of memory

Solution:

- Periodically forget some learned clauses
- Keep only "the best" learned clauses

^a"Empirical Study of the Anatomy of Modern Sat Solvers", Katebi et al., 2013

Clause Forgetting

Motivation

Clause learning is most important pruning strategy in CDCL solvers.^a

Problem:

- Slows down unit propagation
- Risk of running out of memory

Solution:

- Periodically forget some learned clauses
- · Keep only "the best" learned clauses
- How to figure out which learned clauses are "the best"?

^a"Empirical Study of the Anatomy of Modern Sat Solvers", Katebi et al., 2013

Clause Forgetting

Periodic Clause Forgetting: Heuristics

Clause Size

Keep short clauses

· Least Recently Used (LRU)

Keep clauses which where reasons in recent conflicts: clause activity (moving average)

Literal Block Distance (LBD)

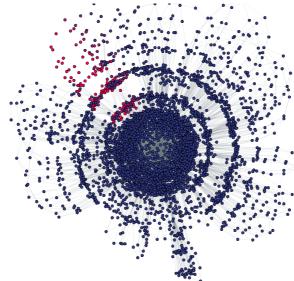
Keep clauses with a low number of decision levels^a

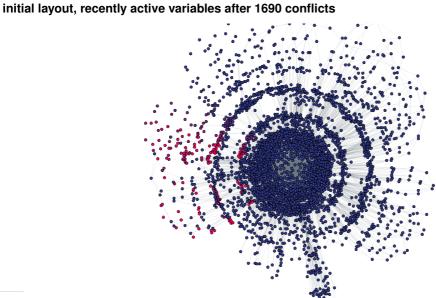
^aPredicting Learnt Clauses Quality in Modern SAT Solvers, Audemard & Simon (IJCAI 2009)

Forgetting Heuristic: Literal Block Distance (LBD)

"Impact of Community Structure on SAT Solver Performance", Newsham et al., SAT 2014

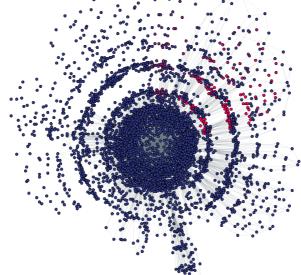
Take home: LBD correlates with number of touched communities Image Source: "Community Structure in Industrial SAT Instances", Ansotegui et al., AIJ 2019

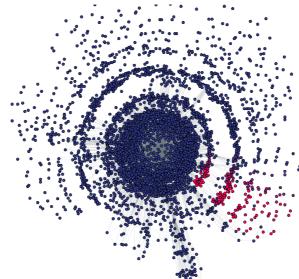

Tier	Strategy	Description		
core	LBD	Permanently store clauses of LBD $\leq k$ (core-cut value, 3 in practice)		
mid-tier	LRU	Clauses stay here if used in recent conflicts		
local	LRU	Keep fixed number of clauses (say 5000) of highest activity		


History

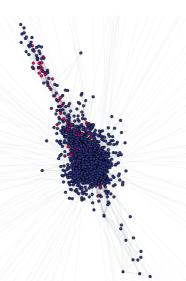
- core and local tier introduced in SWDiA5BY (Chanseok Oh, 2014)
- mid-tier introduced in CoMinisatPS (Chanseok Oh, 2015)
- "Between SAT and UNSAT: The Fundamental Difference in CDCL SAT" (Chanseok Oh, 2015)
- Note: MapleCOMSPS (2016) is a CoMinisatPS fork

initial layout, recently active variables after 1000 conflicts

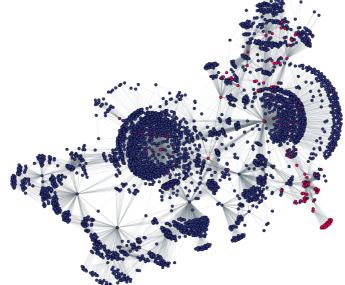


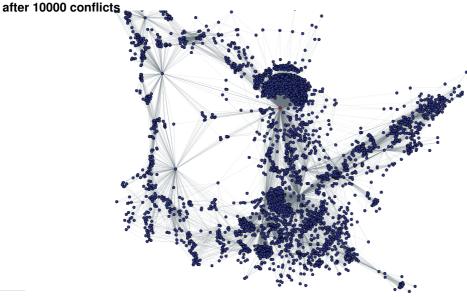


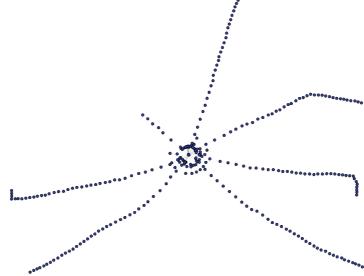
initial layout, recently active variables after 3090 conflicts

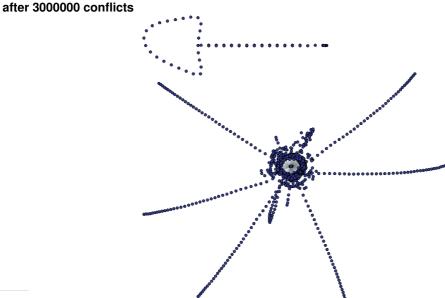

initial layout, recently active variables after 5000 conflicts

relayout after 6000 conflicts

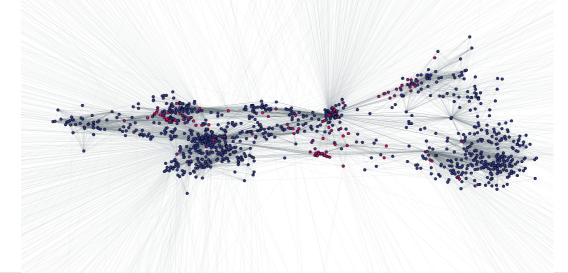

Visualized Instance: Aprove (Termination Analysis, SAT) core after 52500 conflicts


Visualized Instance: Newton SMT (SV Competition, SAT) initial layout


Visualized Instance: Newton SMT (SV Competition, SAT)


Visualized Instance: Newton SMT (SV Competition, SAT) after 1000000 conflicts

Visualized Instance: Newton SMT (SV Competition, SAT)



Visualized Instance: Newton SMT (SV Competition, SAT)

core, after 3500000 conflicts, almost solved

Recap

So far

- · Efficient Unit Propagation
- · Clause Forgetting Heuristics:
 - · Size, LRU, LBD
 - Three-Tier Clause Management

Next Up

Modern Decision Heuristics

May 27, 2024

VSIDS Heuristic

Implemented in most CDCL solvers. First presented in SAT solver Chaff.^a

Always select variable with highest score for branching. Scores are updated after each conflict.

- Initialize variable score (with zero or use some static heuristic)
- New conflict clause c: score is incremented for all variables in c
- Periodically, divide all scores by a constant

^aChaff: Engineering an efficient SAT solver (Moskewicz et al., 2001)

Example: Score Update after Conflict

Formula: Scores before: Scores after:

$\{x_1,x_4\},\{x_1,\overline{x_3},\overline{x_8}\}$	$\{x_1, x_8, x_{12}\}, \{x_2, x_{11}\},$	4 : <i>x</i> ₈	4: x ₈ , x ₇
$\{\overline{x_7},\overline{x_3},x_9\},\{\overline{x_7},x_8$	$,\overline{x_9}\},\{x_7,x_8,\overline{x_{10}}\}$	$3: x_1, x_7$	3 : <i>x</i> ₁
$\{x_7,x_{10},\overline{x_{12}}\}$	(new learned clause)	2 : <i>x</i> ₃	$2: X_3, X_{10}, X_1$

$$1: x_2, x_4, x_9, x_{10}, x_{11}, x_{12}$$
 $1: x_2, x_4, x_9, x_{11}$

Example: Score Update after Conflict

Formula:

$\{x_{1}, x_{4}\}, \{x_{1}, \overline{x_{3}}, \overline{x_{8}}\}, \{x_{1}, x_{8}, x_{12}\}, \{x_{2}, x_{11}\},$ $\{\overline{x_{7}}, \overline{x_{3}}, x_{9}\}, \{\overline{x_{7}}, x_{8}, \overline{x_{9}}\}, \{x_{7}, x_{8}, \overline{x_{10}}\}$ $\{x_{7}, x_{10}, \overline{x_{12}}\}$ (new learned clause)

Scores before:

4:
$$x_8$$

3: x_1, x_7
2: x_3
1: $x_2, x_4, x_9, x_{10}, x_{11}, x_{12}$

Scores after:

$$4: x_8, x_7$$

 $3: x_1$

$$2: x_3, x_{10}, x_{12}$$

$$1: X_2, X_4, X_9, X_{11}$$

- · VSIDS leads to more "focused" search
- prefers variables that occurred in recent conflicts
- tends to find smaller unsatisfiable subsets

Variable State Independent Decaying Sum (VSIDS)

Keep list of variables sorted by scores

Common implementation: Binary Heap						
Heap Operation	Complexity	Callee				
insert_with_priority	$\mathcal{O}(\log n)$	Backtracking				
pull_highest_priority_element	$\mathcal{O}(\log n)$	Branching				
<pre>increase_key / bump_variable</pre>	$\mathcal{O}(\log n)$	Conflict Analysis				
decay	$\mathcal{O}(n)$	[Periodic] ^a				
^a Periodically divide scores to give priority to recently learned clauses						

VSIDS Variants

Chaff (2001)

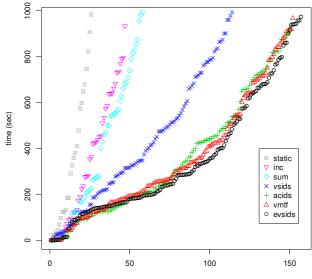
- · decay: half scores every 256 conflicts
- · sort priority queue after each decay only

Berkmin (2002)

- · bump all literals in implication graph
- · divide scores by 4

Minisat (2003)

- Exponential VSIDS (EVSIDS)
- · Reason-side Bumping


Alternatives

Siege (2004): Variable Move To Front (VMTF)

HaifaSAT (2008): Clause Move To Front (CMTF)

"Evaluating CDCL Variable Scoring Schemes"

Biere & Fröhlich, 2015

solved SAT competition 2014 application track instances (ordered by time)

Recent Hybrid Approaches

Hybrid Approaches

- Warmup Phase:
 - MapleCOMSPS (2016): use Learning Rate-based Branching (LRB) in initial period, then switch to VSIDS
 - Maple LCM Dist (2017): use Distance Heuristic (Dist.) in initial period, then switch to VSIDS
- Reinforcement Learning: Kissat MAB (2021)
 - Two-armed Bandid switches between VSIDS and Conflict History-Based (CHB) Heuristic
 - Reward function favors variables that contribute to learning "good" clauses

Recap

So far

- Unit Propagation
- Clause Forgetting
- · Modern Branching Heuristics
 - Mostly VSIDS
 - · Hybrid approaches: warmup VSIDS scores, reinforcement learning