
Practical SAT Solving (ST 2025) Assignment 2

Markus Iser, Dominik Schreiber, Niccolò Rigi-Luperti

Algorithm Engineering & Scalable Automated Reasoning (KIT) 2025-05-20 – 2024-06-03

1 Competition: SDVSTP (8(+8) Points)

Consider the well-known and industrially relevant Stardew Valley Soil Tilling Problem (SDVSTP), which we
also talked about (in a slightly simpler form) in the 0th exercise.
We have a w× h 2D grid G of “soil” cells. Each of the w · h cells is in exactly one of the following states: tilled
(T), should be tilled (+), or must not be tilled (−). We also define the following five patterns (corresponding to
five increasing charging levels of a hoe):

base copper iron gold iridium

We further define action a = (p, r, x, y) as follows: Rotate the pattern p ∈ {base, copper, iron, gold, iridium} by
r ∈ {0◦, 90◦} and then align its upper left corner with grid position (x, y). Then a is applicable if the pattern
is fully contained within G. Applying a changes all cells in G under the pattern to state T.

A solution for G is a set of applicable actions A = {a1, a2, . . . , ak} such that applying each action in A
transforms G into the grid G′ where all cells that were initially in state + are in state T and all cells that were
initially in state − are still in state −. The objective is to find a solution that minimizes k.

Devise a SAT-based SDVSTP solver. Your program should take a single argument, the path to an input file
in the straight-forward .sdvstp format, structured as in the example in Fig. 1 (left). The solver should output
a line “s SOLUTION k”, where k is the minimum number of required actions, followed by k lines describing each
individual action (p, r, x, y) ∈ A, as in Fig. 1 (center).

p sdvstp 8 5

++++++++

++++++++

++T--+++

+TT--+++

-------+

s SOLUTION 6

v gold 0 0 0

v gold 0 5 1

v iron 90 3 0

v copper 90 3 1

v base 0 0 3

v base 0 7 4

T

T T

0 1 2 3 4 5 6 7

0

1

2

3

4

Figure 1: Left: Example .sdvstp input file specifying an 8× 5 grid. Center: Possible corresponding output of
the solver (columns aligned only for better readability). Right: illustration of the grid and the output solution,
with the top-left “anchor point” of each pattern marked with an arrow.

You get 8 points for a correct SDVSTP solver that is able to solve easy instances within a few minutes. The
best performing solution is awarded double the points.

Code skeleton: https://github.com/satlecture/kit2025/blob/main/code/src/sdvstp/sdvstp.cc

Some benchmark instances: https://github.com/satlecture/kit2025/tree/main/exercises/sdvstp

https://github.com/satlecture/kit2025/blob/main/code/src/sdvstp/sdvstp.cc
https://github.com/satlecture/kit2025/tree/main/exercises/sdvstp

2 CDCL (3+6 Points)

2.1 a)

Simulate the CDCL algorithm by hand on the formula F. Select branching literals in the order x1, x2, x3,
Draw the implication graph once a conflict occurs, learn the 1-UIP clause and continue CDCL search with the
variable implied by the asserting learned clause. If everything goes right you should only encounter a single
conflict before arriving a satisfying assignment. To emphasize the structure, each variable xi is just written as i
and it’s negation x̄i as −i. So for example, x̄4 is written as −4 and x8 as 8.

F = {{−1,−2,−4}, {−3, 6}, {−5,−6, 8}, {4,−8, 10}, (1)

{7, 9}, {−2,−8, 9}, {−1,−9− 10}, {−5, 8, 9}} (2)

2.2 b)

Repeat the CDCL algorithm, now for the larger formula F ′. Again, select branching literals again in the order
x1, x2, x3, Draw the implication graph at every conflict and give the learned 1-UIP clause. Provide the final
assignment.

F ′ ={{1, 13}, {−1,−2, 14}, {3, 15}, {4, 16}, {−5,−3, 6},
{−5,−7}, {−6, 7, 8}, {−4,−8,−9}, {−1, 9,−10},
{9, 11,−14}, {10,−11, 12}, {−2,−11,−12}} (3)

3 Local Search Competition (7(+7) Points)

Using the methods from the lecture, as well as any others you find in the literature or invent yourself, im-
plement an efficient local search SAT solver. The solver should accept one argument, which is the path to
an input file in DIMACS format. Easy-to-solve, satisfiable instances can be found in the Global Benchmark
Database (GBD) [1]. You can use the parser provided in the lecture [2]. The output format of your solver
should adhere to the format used in the SAT competition which is specified online [3]. Solvers will be evaluated
on a random set of satisfiable instances, and we will verify that the model is correct. Additionally, we will test
your solver on unsatifiable instances.

[1] Benchmark Instances: https://benchmark-database.de/?minisat1m=yes&result=sat.

[2] CNF Parser: https://github.com/satlecture/kit2025/blob/main/code/src/util/CNFFormula.h.

[3] Output Format: https://satcompetition.github.io/2025/output.html.

You will receive seven points for a local search solver that can correctly solve easy instances in a few minutes.
The solution with the best performance will receive double the points.

2

https://benchmark-database.de/?minisat1m=yes&result=sat
https://github.com/satlecture/kit2025/blob/main/code/src/util/CNFFormula.h
https://satcompetition.github.io/2025/output.html

	Competition: SDVSTP (8(+8) Points)
	CDCL (3+6 Points)
	a)
	b)

	Local Search Competition (7(+7) Points)

