
Practical SAT Solving

Lecture 1 – Organization, Introduction, Incremental SAT Solving
Markus Iser, Dominik Schreiber | April 22, 2025

14 lectures: Mondays at 3:45 pm, room 301

7 exercises: Tuesdays at 3:45 pm, room 301 (starting May 6, every other week)

Bring your laptop if you can!

Sign up:
http://campus.studium.kit.edu

Find material (lecture plan, slides, exercises, code) on our course website:

https://satlecture.github.io/kit2025/

2/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Organisation

http://campus.studium.kit.edu
https://satlecture.github.io/kit2025/

Lecturer: Dr. Markus Iser – Post-doc at Algorithm Engineering group
Contact: markus.iser@kit.edu

Expert in Boolean Reasoning and Empirical Algorithmics

Involved in this lecture since 2020 (guest lectures before then)

Lecturer: Dr. Dominik Schreiber – Scalable Automated Reasoning (SatRes) group leader
Contact: dominik.schreiber@kit.edu

Expert in parallel and distributed SAT solving

Involved in this lecture since 2023 (guest lectures before then)

Co-manager of exercises: Niccolò Rigi-Luperti – Doctoral researcher @ SAtRes group
Contact: niccolo.rigi-luperti@kit.edu

Previous Lecturers: Prof. Carsten Sinz, Dr. Tomáš Balyo
– Founders of the Practical SAT Solving Lecture at KIT in 2015

3/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Organisers

mailto:markus.iser@kit.edu
mailto:dominik.schreiber@kit.edu
mailto:niccolo.rigi-luperti@kit.edu

You earn exercise points for doing homework and coming to class with your solutions.
For each exercise, the lucky “referee” is chosen randomly among all who stated that they prepared it
No need to prepare a highly polished artifact! You need a clear idea and approach (+ code for practical exercises).
Not being able to present an exercise after stating to be able invalidates all earned points so far

You can earn at least 120 exercise points during the semester (+ more bonus points).
Some exercises will be in the form of small implementation contests.
Contest winners will receive bonus points.
We encourage group work! Jointly winning a contest gets each participant an equal share of the bonus points.

You must earn at least 60 points to participate in the oral exam.

Earning at least 120 points will improve the grade of your passed oral exam by one step.

4/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Homework, Competitions, and Oral Exam

Practical knowledge and transferable skills in the following areas:

Using SAT Solving

Solver usage, general encoding techniques, efficient CNF encodings of constraints, properties of encodings, . . .

Practical Hardness of SAT
Tractable classes, instance structure, hardest instances, proof complexity, . . .

Methods for SAT Solving

Algorithms, and data structures, heuristics, implementation techniques, parallelization, proof formats, . . .

Applications of SAT Solving

Hardware and software verification, planning and scheduling, security and cryptography, Explainable AI, . . .

5/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Goals of this Lecture

Practical knowledge and transferable skills in the following areas:

Using SAT Solving

Solver usage, general encoding techniques, efficient CNF encodings of constraints, properties of encodings, . . .

Practical Hardness of SAT
Tractable classes, instance structure, hardest instances, proof complexity, . . .

Methods for SAT Solving

Algorithms, and data structures, heuristics, implementation techniques, parallelization, proof formats, . . .

Applications of SAT Solving

Hardware and software verification, planning and scheduling, security and cryptography, Explainable AI, . . .

5/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Goals of this Lecture

Practical knowledge and transferable skills in the following areas:

Using SAT Solving

Solver usage, general encoding techniques, efficient CNF encodings of constraints, properties of encodings, . . .

Practical Hardness of SAT
Tractable classes, instance structure, hardest instances, proof complexity, . . .

Methods for SAT Solving

Algorithms, and data structures, heuristics, implementation techniques, parallelization, proof formats, . . .

Applications of SAT Solving

Hardware and software verification, planning and scheduling, security and cryptography, Explainable AI, . . .

5/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Goals of this Lecture

Practical knowledge and transferable skills in the following areas:

Using SAT Solving

Solver usage, general encoding techniques, efficient CNF encodings of constraints, properties of encodings, . . .

Practical Hardness of SAT
Tractable classes, instance structure, hardest instances, proof complexity, . . .

Methods for SAT Solving

Algorithms, and data structures, heuristics, implementation techniques, parallelization, proof formats, . . .

Applications of SAT Solving

Hardware and software verification, planning and scheduling, security and cryptography, Explainable AI, . . .

5/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Goals of this Lecture

Outline

Basic Definitions, History, and Complexity of SAT

Applications of SAT Solving

Examples from Mathematics and Computer Science

Incremental SAT Solving

Live Demo and Coding

6/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Plan for Today

In this lecture, propositional formulas are given in conjunctive normal form (CNF), and if not, we convert them.

CNF Formulas

A CNF formula is a conjunction (and = ∧) of clauses.
A clause is a disjunction (or = ∨) of literals.
A literal is a Boolean variable x (positive literal) or its negation x (negative literal).

Example (CNF Formula)

F = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1)

vars(F) =

{
x1, x2, x3

}

lits(F) =

{
x1,¬x1, x2,¬x2, x3

}

clauses(F) =

{
{¬x1, x2}, {¬x1,¬x2, x3}, {x1}

}

7/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Basic Definitions

In this lecture, propositional formulas are given in conjunctive normal form (CNF), and if not, we convert them.

CNF Formulas

A CNF formula is a conjunction (and = ∧) of clauses.
A clause is a disjunction (or = ∨) of literals.
A literal is a Boolean variable x (positive literal) or its negation x (negative literal).

Example (CNF Formula)

F = (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x1)

vars(F) =
{

x1, x2, x3
}

lits(F) =
{

x1,¬x1, x2,¬x2, x3
}

clauses(F) =
{
{¬x1, x2}, {¬x1,¬x2, x3}, {x1}

}
7/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Basic Definitions

The Satisfiability Problem is to determine whether a given formula is satisfiable.

A CNF formula F is satisfiable iff there exists a truth assignment to vars(F) that satisfies F .

Satisfying Assignment

Given a CNF formula over variables V , a truth assignment ϕ : V −→ {⊤,⊥} satisfies . . .

. . . a CNF formula if it satisfies all of its clauses

. . . a clause if it satisfies at least one of its literals

. . . a positive literal x if ϕ(x) = ⊤ (True)

. . . a negative literal ¬x if ϕ(x) = ⊥ (False)

8/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Satisfiable or Unsatisfiable?)

F1 = {{x1}}

F2 = {{x1}, {x1}}

F3 = {{x2, x8, x3}}

F4 = {{x1}, {x2}, {x2, x1}}

F5 = {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}}

F6 = {{x1, x2}, {x1, x2, x3}, {x1}}

Edge Cases: What are the shortest satisfiable / unsatisfiable CNF formulas?

9/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Satisfiable or Unsatisfiable?)

F1 = {{x1}}

F2 = {{x1}, {x1}}

F3 = {{x2, x8, x3}}

F4 = {{x1}, {x2}, {x2, x1}}

F5 = {{x1, x2}, {x1, x2}, {x1, x2}, {x1, x2}}

F6 = {{x1, x2}, {x1, x2, x3}, {x1}}

Edge Cases: What are the shortest satisfiable / unsatisfiable CNF formulas?

9/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3},

{x1, x3}, {¬x5}, {x4, x5},
{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3}, {x1, x3},

{¬x5}, {x4, x5},
{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3}, {x1, x3}, {¬x5},

{x4, x5},
{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3}, {x1, x3}, {¬x5}, {x4, x5},

{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3}, {x1, x3}, {¬x5}, {x4, x5},
{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

Example (Scheduling)

Schedule a meeting of Adam, Bridget, Charles, and
Darren considering the following constraints

Bridget cannot meet on Wednesday

Adam can only meet on Monday or Wednesday

Charles cannot meet on Friday

Darren can only meet on Thursday or Friday

Example (CNF Encoding)

vars(F) ={x1, x2, x3, x4, x5}

F =
{
{¬x3}, {x1, x3}, {¬x5}, {x4, x5},
{¬x1,¬x2}, {¬x1,¬x3}, {¬x1,¬x4}, {¬x1,¬x5},
{¬x2,¬x3}, {¬x2,¬x4}, {¬x2,¬x5},
{¬x3,¬x4}, {¬x3,¬x5},
{¬x4,¬x5}

}

Is this Scheduling Instance Satisfiable?

10/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfiability

A decision problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

SAT is NP-complete (Cook-Levin Theorem)

SAT is in NP
Proof: solution can be checked in polynomial time

Every problem in NP can be reduced to SAT in polynomial time
Proof: encode the run of a non-deterministic Turing machine as a CNF formula

Consequences of NP-completeness of SAT

We do not have a polynomial algorithm for SAT (yet)

If P ̸= NP then we will never have a polynomial algorithm for SAT

All the known algorithms for SAT have exponential runtime in the worst case

Try it yourself: http://www.cs.utexas.edu/~marijn/game/

11/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Complexity of Propositional Satisfiability

http://www.cs.utexas.edu/~marijn/game/

A decision problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

SAT is NP-complete (Cook-Levin Theorem)

SAT is in NP
Proof: solution can be checked in polynomial time

Every problem in NP can be reduced to SAT in polynomial time
Proof: encode the run of a non-deterministic Turing machine as a CNF formula

Consequences of NP-completeness of SAT

We do not have a polynomial algorithm for SAT (yet)

If P ̸= NP then we will never have a polynomial algorithm for SAT

All the known algorithms for SAT have exponential runtime in the worst case

Try it yourself: http://www.cs.utexas.edu/~marijn/game/

11/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Complexity of Propositional Satisfiability

http://www.cs.utexas.edu/~marijn/game/

A decision problem is NP-complete if it is in NP and every problem in NP can be reduced to it in polynomial time.

SAT is NP-complete (Cook-Levin Theorem)

SAT is in NP
Proof: solution can be checked in polynomial time

Every problem in NP can be reduced to SAT in polynomial time
Proof: encode the run of a non-deterministic Turing machine as a CNF formula

Consequences of NP-completeness of SAT

We do not have a polynomial algorithm for SAT (yet)

If P ̸= NP then we will never have a polynomial algorithm for SAT

All the known algorithms for SAT have exponential runtime in the worst case

Try it yourself: http://www.cs.utexas.edu/~marijn/game/

11/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Complexity of Propositional Satisfiability

http://www.cs.utexas.edu/~marijn/game/

Historic Landmarks

1960: DP Algorithm (first SAT solving algorithm)

1962: DPLL Algorithm (improving upon DP algorithm)

1971: SAT is NP-Complete

1992: Local Search Algorithm Selman et al.: A New Method for Solving Hard Satisfiability Problems

1992: The First International SAT Competition (followed by 1993, 1996, since 2002 every year)

1996: The First International SAT Conference (Workshop) (followed by 1998, since 2000 every year)

1999: Conflict Driven Clause Learning (CDCL) Algorithm

Advancements
From 1992 to 2024, SAT solvers have improved by several orders of magnitude in terms of feasible problem size.
From 100 variables and 200 clauses to 21,000,000 variables and 96,000,000 clauses.

12/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

History of Propositional Satisfiability

http://doi.acm.org/10.1145/321033.321034
https://doi.acm.org/10.1145/368273.368557
https://dl.acm.org/doi/10.1145/800157.805047
http://www.aaai.org/Library/AAAI/1992/aaai92-068.php
https://doi.org/10.1109/12.769433

2022, Haifa, Israel

2024, Pune, India

13/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SAT Conference

Hardware verification and design
Major hardware companies (Intel, . . .) use SAT to verify chip designs
Computer Aided Design of electronic circuits

Software verification
SAT-based SMT solvers are used to verify Microsoft software products
and Amazon Web Services’ core software libraries
Embedded software in cars, airplanes, refrigerators, . . .
Unix utilities

Automated planning and scheduling
Job shop scheduling, train scheduling, multi-agent path finding

Cryptanalysis
Test/prove properties of cryptographic ciphers, hash functions

Number theoretic problems (Pythagorean triples, grid coloring)

Solving other NP-hard problems (coloring, clique, . . .)

14/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Applications of SAT Solving

15/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SAT Solving in the News

Problem Definition
Can we assign each integer 1,2, . . . ,n to one of two colors such that the following holds for all integers a,b, c:
If a2 + b2 = c2, then a,b and c do not all have the same color.

Solution: No! Impossible for n = 7825
Proof obtained by a SAT solver has 200 Terabytes – back then the largest Math proof yet

How to encode this?

For each integer i , we have a Boolean variable xi which represents the color of i .
For each a,b, c such that a2 + b2 = c2, encode two clauses: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

16/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Pythagorean Triples

Problem Definition
Can we assign each integer 1,2, . . . ,n to one of two colors such that the following holds for all integers a,b, c:
If a2 + b2 = c2, then a,b and c do not all have the same color.

Solution: No! Impossible for n = 7825
Proof obtained by a SAT solver has 200 Terabytes – back then the largest Math proof yet

How to encode this?

For each integer i , we have a Boolean variable xi which represents the color of i .
For each a,b, c such that a2 + b2 = c2, encode two clauses: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

16/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Pythagorean Triples

Problem Definition
Can we assign each integer 1,2, . . . ,n to one of two colors such that the following holds for all integers a,b, c:
If a2 + b2 = c2, then a,b and c do not all have the same color.

Solution: No! Impossible for n = 7825
Proof obtained by a SAT solver has 200 Terabytes – back then the largest Math proof yet

How to encode this?

For each integer i , we have a Boolean variable xi which represents the color of i .
For each a,b, c such that a2 + b2 = c2, encode two clauses: (xa ∨ xb ∨ xc) and (xa ∨ xb ∨ xc)

16/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Pythagorean Triples

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.

What about 01001011?

No, the ones at x2, x5, x8 are equally spaced.

6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011?

No, the ones at x2, x5, x8 are equally spaced.
6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011? No, the ones at x2, x5, x8 are equally spaced.

6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011? No, the ones at x2, x5, x8 are equally spaced.
6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.

Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011? No, the ones at x2, x5, x8 are equally spaced.
6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?

Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011? No, the ones at x2, x5, x8 are equally spaced.
6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).

Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Problem Definition
Find a binary sequence x1, . . . , xn that has no k equally spaced zeroes and no k equally spaced ones.

Example (n = 8, k = 3)

Find a binary sequence x1, . . . , x8 that has no three equally spaced zeroes and no three equally spaced ones.
What about 01001011? No, the ones at x2, x5, x8 are equally spaced.
6 Solutions: 00110011, 01011010, 01100110, 10011001, 10100101, 11001100.
Extending the problem to n = 9 digits, no solution remains. How can we show this with a SAT solver?
Encode what’s forbidden: x2x5x8 ̸= 111 is the same as (x2 ∨ x5 ∨ x8).
Writing, e.g., 2̄5̄8̄ for the clause (x2 ∨ x5 ∨ x8), we arrive at 32 clauses for the 9 digit sequence:
123,234, . . . ,789,135,246, . . . ,579,147,258,369,159, 1̄2̄3̄, 2̄3̄4̄, . . . , 7̄8̄9̄, 1̄3̄5̄, 2̄4̄6̄, . . . , 5̄7̄9̄, 1̄4̄7̄, 2̄5̄8̄, 3̄6̄9̄, 1̄5̄9̄.

17/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Arithmetic Progressions

Let’s generalize our sequence to feature the numbers (“colors”) {0,1, . . . , r − 1} (so far: r = 2).

Theorem (van der Waerden)

For any r , k ∈ N+, there exists some n ∈ N+ such that:
Every sequence x1, . . . , xn of numbers 0 ≤ xi < r has at least k equally spaced positions with the same number.

The smallest such n is the van der Waerden number W (r , k).
For larger r , k , the numbers are only partially known.

Example (Van der Waerden Numbers)

We have seen that W (2,3) = 9.
W (2,6) = 1132 was shown in [2008 by Kouril and Paul] (using a SAT solver!)
but W (2,7) is yet unknown.

22r22k+9

is an upper bound for W (r , k) (shown in [2001 by Gowers]).

18/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Background: Van der Waerden Numbers

http://dx.doi.org/10.1080/10586458.2008.10129025
http://dx.doi.org/10.1007/s00039-001-0332-9

Let’s generalize our sequence to feature the numbers (“colors”) {0,1, . . . , r − 1} (so far: r = 2).

Theorem (van der Waerden)

For any r , k ∈ N+, there exists some n ∈ N+ such that:
Every sequence x1, . . . , xn of numbers 0 ≤ xi < r has at least k equally spaced positions with the same number.

The smallest such n is the van der Waerden number W (r , k).
For larger r , k , the numbers are only partially known.

Example (Van der Waerden Numbers)

We have seen that W (2,3) = 9.
W (2,6) = 1132 was shown in [2008 by Kouril and Paul] (using a SAT solver!)
but W (2,7) is yet unknown.

22r22k+9

is an upper bound for W (r , k) (shown in [2001 by Gowers]).

18/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Background: Van der Waerden Numbers

http://dx.doi.org/10.1080/10586458.2008.10129025
http://dx.doi.org/10.1007/s00039-001-0332-9

Example (McGregor Graph, 110 nodes, planar)

Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, M. Gardner’s “Mathematical Games”)

19/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring

Example (McGregor Graph, 110 nodes, planar)

Claim: Cannot be colored with less than 5 colors. (Scientific American, 1975, M. Gardner’s “Mathematical Games”)

19/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:

use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:

Every node gets some color:
(v1 ∨ · · · ∨ vk) for v ∈ V

Adjacent nodes have different colors:
(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k

Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:

use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:

Every node gets some color:
(v1 ∨ · · · ∨ vk) for v ∈ V

Adjacent nodes have different colors:
(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k

Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:

Every node gets some color:
(v1 ∨ · · · ∨ vk) for v ∈ V

Adjacent nodes have different colors:
(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k

Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:
Every node gets some color:

(v1 ∨ · · · ∨ vk) for v ∈ V
Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k
Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:
Every node gets some color:

(v1 ∨ · · · ∨ vk) for v ∈ V

Adjacent nodes have different colors:
(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k

Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:
Every node gets some color:

(v1 ∨ · · · ∨ vk) for v ∈ V
Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k
Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:
Every node gets some color:

(v1 ∨ · · · ∨ vk) for v ∈ V
Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k

Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Definition: Graph Coloring Problem (GCP)

Given an undirected graph G = (V ,E) and a number k , a k -coloring assigns one of k colors to each node
such that all adjacent nodes have a different color. The GCP asks whether a k -coloring for G exists.

SAT Encoding

Variables:
use k · |V | Boolean variables vj for v ∈ V ,1 ≤ j ≤ k ; vj is true iff node v gets color j .

Clauses:
Every node gets some color:

(v1 ∨ · · · ∨ vk) for v ∈ V
Adjacent nodes have different colors:

(uj ∨ vj) for u, v ∈ E ,1 ≤ j ≤ k
Suppress multiple colors for a node: at-most-one constraints

20/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: SAT Encoding

Example (Graph Coloring Problem)

V = {u, v ,w , x , y}
Colors: red (=1), green (=2), blue (=3)
Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)

...
(y1 ∨ y2 ∨ y3)

“adjacent nodes have different colors”
(u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

21/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: Example

Example (Graph Coloring Problem)

V = {u, v ,w , x , y}
Colors: red (=1), green (=2), blue (=3)
Clauses:
“every node gets a color”
(u1 ∨ u2 ∨ u3)

...
(y1 ∨ y2 ∨ y3)

“adjacent nodes have different colors”
(u1 ∨ v1) ∧ · · · ∧ (u3 ∨ v3)

...
(x1 ∨ y1) ∧ · · · ∧ (x3 ∨ y3)

u

v w

y x

21/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Graph Coloring: Example

SAT solvers are command line applications that take as argument a text file with a formula.

Example (Input: DIMACS CNF format)

c comments, ignored by solver
p cnf 7 22
1 -2 7 0
...
-7 -3 -2 0

Example (Output)

c comments, usually some statistics about the solving
s SATISFIABLE
v 1 2 -3 -4
v 5 -6 -7 0

22/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Using a SAT Solver

SAT solvers are command line applications that take as argument a text file with a formula.

Example (Input: DIMACS CNF format)

c comments, ignored by solver
p cnf 7 22
1 -2 7 0
...
-7 -3 -2 0

Example (Output)

c comments, usually some statistics about the solving
s SATISFIABLE
v 1 2 -3 -4
v 5 -6 -7 0

22/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Using a SAT Solver

Let’s try it!

1. Download and build a SAT solver:

CaDiCaL, Kissat, Minisat, CryptoMinisat, Maplesat, . . .

In this lecture, we use: CaDiCaL

Competitive performance

Originally written by Armin Biere

Highly educational, includes elaborate comments and references to the literature

Reference implementations of the standard SAT solver interface: IPASIR

2. Download a SAT formula:

Global Benchmark Database

3. Determine its satisfiability

23/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Running a SAT Solver

https://github.com/arminbiere/cadical
https://github.com/arminbiere/kissat
https://github.com/niklasso/minisat
https://github.com/msoos/cryptominisat
https://maplesat.github.io/
https://github.com/arminbiere/cadical
https://benchmark-database.de

There are many applications that require us to solve a sequence of similar SAT instances:

Software verification, planning, scheduling, MaxSAT, . . .

Incremental SAT Solving

The SAT solver is initialized once with a formula

Assumptions can be added before each call to solve()

→ assumptions are literals that serve as a partial assignment to their variables

Between solve() calls, new clauses can be added

Advantage 1: (De-)Initialization overheads removed

Advantage 2: Keep preprocessed formula, learned clauses, dynamic heuristic parameters, . . .

24/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Incremental SAT Solving

IPASIR = Re-entrant Incremental Satisfiability API (acronym reversed)

IPASIR

Defined for SAT Race 2015 to unify incremental SAT solver interfaces

IPASIR has become a standard interface of incremental SAT solving

Extension by User Propagators (UP): IPASIR UP

Version 2 is in the works

25/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

An Incremental SAT Solver Interface: IPASIR

https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.4230/LIPIcs.SAT.2023.8
https://github.com/biotomas/ipasir
https://github.com/ipasir2

IPASIR = Re-entrant Incremental Satisfiability API (acronym reversed)

IPASIR

Defined for SAT Race 2015 to unify incremental SAT solver interfaces

IPASIR has become a standard interface of incremental SAT solving

Extension by User Propagators (UP): IPASIR UP

Version 2 is in the works

25/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

An Incremental SAT Solver Interface: IPASIR

https://doi.org/10.1016/j.artint.2016.08.007
https://doi.org/10.4230/LIPIcs.SAT.2023.8
https://github.com/biotomas/ipasir
https://github.com/ipasir2

Function Description

signature return the name and version of the solver

init initialize the solver, the pointer it returns is used for the rest of the functions

add add clauses, one literal at a time

assume add an assumption, the assumptions are cleared after a solve() call

solve solve the formula, return SAT, UNSAT or INTERRUPTED

val return the truth value of a variable (if SAT)

failed returns true if the given assumption was part of reason for UNSAT

For more details and examples of usage see https://github.com/biotomas/ipasir

How to delete a clause?

26/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

IPASIR Functions

https://github.com/biotomas/ipasir

Function Description

signature return the name and version of the solver

init initialize the solver, the pointer it returns is used for the rest of the functions

add add clauses, one literal at a time

assume add an assumption, the assumptions are cleared after a solve() call

solve solve the formula, return SAT, UNSAT or INTERRUPTED

val return the truth value of a variable (if SAT)

failed returns true if the given assumption was part of reason for UNSAT

For more details and examples of usage see https://github.com/biotomas/ipasir

How to delete a clause?

26/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

IPASIR Functions

https://github.com/biotomas/ipasir

27/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

IPASIR Solver States

Given a CNF formula F over variables V := vars(F), satifying assignments to F can be partial, i.e., some variables in V
are not assigned but still the formula is satisfied.

A variable x is essential if and only x it has to be assigned (True or False) in each satisfying assignment.

Example (Enumerating Essential Variables)

Create the Dual Rail Encoding of F :

For each variable x , add two new variables xP and xN

Replace each positive (negative) occurrence of x with xP (xN)

Add a clause (xP ∨ xN) (meaning x cannot be both true and false)

For each variable x , solve the formula with the assumptions xP and xN.

If the formula is UNSAT under these assumptions then x is essential.

Let’s implement it!

28/28 April 22, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Code Demo: Essential Variables

