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Overview

Recap. Lecture 1

m Satisfiability: Propositional Logic, CNF Formulas, NP-completeness, Applications
m Examples: Pythagorean Triples, Arithmetic Progressions, k-Colorability

m Incremental SAT: IPASIR, Sample Code

m Tractable Subclasses

m Constraint Encodings

m Encoding Techniques
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Tractable Subclasses

Do you know any?

3/23  April 29,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT


https://doi.org/10.1145/800133.804350

Tractable Subclasses

Tractable Subclasses

m 2-SAT
Exactly two literals per clause

m HORN-SAT
At most one positive literal per clause

m Inverted HORN-SAT
At most one negative literal per clause

m Positive / Negative
Literals occur only pure (either positive or negative)

m XOR-SAT
No clauses, only XOR constraints
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2-SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

F7 = {{—x1, %2}, {—X2, X3}, { X3, X1 }, { X2, Xa }, { X3, Xa }, {X1, X3} }

AT
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2-SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

F7 = {{—x1, %2}, {—X2, X3}, { X3, X1 }, { X2, Xa }, { X3, Xa }, {X1, X3} }

Linear Time Algorithm for 2-SAT

m Construct Implication Graph:

Directed graph with a vertex for each literal and two edges —/; — kL and —/L — /; for each clause {/;, b}
m Find Strongly Connected Components (SCC): In an SCC, there is a path from every vertex to every other vertex.

m Check for existence of complementary literals in the same SCC
Tarjan’s algorithm finds SCCs in O(|V| + |E|)
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2-SAT

Each clause has exactly two literals.

Example (2-SAT Formulas)

F7 = {{—x1, %2}, {—X2, X3}, { X3, X1 }, { X2, Xa }, { X3, Xa }, {X1, X3} }

Linear Time Algorithm for 2-SAT

m Construct Implication Graph:

Directed graph with a vertex for each literal and two edges —/; — kL and —/L — /; for each clause {/;, b}
m Find Strongly Connected Components (SCC): In an SCC, there is a path from every vertex to every other vertex.

m Check for existence of complementary literals in the same SCC
Tarjan’s algorithm finds SCCs in O(|V| + |E|)

What does it mean if x and —x are in the same SCC?
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Implication Graph

Example (Implication Graph)

F7 = {{—x1, %2}, {—X2, X3}, {—X3, X1}, { X2, Xa}, {X3, Xa }, {X1, X3} }

AT



Implication Graph

Example (Implication Graph)
F7 = {{—x1, X2}, {—x2, X3}, { X3, X1 }, {X2, X4}, { X3, Xa }, {X1, X3} }
m |f an SCC contains both x and —x, the formula is UNSAT

Because x implies its own negation and vice versa.
Literals in an SCC must be either all true or all false.
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Implication Graph

Example (Implication Graph)

F7 = {{—x1, %2}, {—X2, X3}, {—X3, X1}, { X2, Xa}, {X3, Xa }, {X1, X3} }

m |f an SCC contains both x and —x, the formula is UNSAT

Because x implies its own negation and vice versa. S X
Literals in an SCC must be either all true or all false. y N
-X2
m What about SAT? How to get a solution? f/
pr =
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Implication Graph

Example (Implication Graph) / N
F7 = {{-x1, %2}, {—=X2, X3}, {—X3, X1}, {X2, Xa}, { X3, Xa }, { X1, X3 } } X1, - -X1,
m If an SCC contains both x and —x, the formula is UNSAT - X2, X3 X2, -X3 |
Because x implies its own negation and vice versa. \“ -
Literals in an SCC must be either all true or all false.
m What about SAT? How to get a solution?
Contract each SCC into one vertex. w4

In reverse topological order, set unassigned literals to true.
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HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:
Fe = {{X1, %2}, {X1, X2, X3}, {x1}} = (x1 = x2) A ((x1 A X2) = X3) A (T — Xxq)
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HornSAT

Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:
Fe = {{X1, %2}, {X1, X2, X3}, {x1}} = (x1 = x2) A ((x1 A X2) = X3) A (T — Xxq)

Solving Horn Formulas

m Propagate until fixpoint
m If T — L then the formula is UNSAT, otherwise it is SAT.

m Construct a satisfying assignment by setting the remaining variables to false
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Hidden Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

F8 — {{X1’X27 X4}7 {X27X_4}7 {X1}} ~ {{X_17 X_27 X4}7 {X_27 X_4}7 {X_1}}

How to recognize a Hidden Horn formula? And how to hard is it?
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Hidden Horn a.k.a. Renamable or Disguised Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

Fg = {{X17X27X4}7 {X27X_4}7 {X1}} ~ {{X_19 X2, X4}v {X_27 X_4}v {X_1}}

How to recognize a Hidden Horn formula? And how to hard is it?

Recognizing Hidden Horn Formula F

Construct 2-SAT formula Rr that contains the clause {/, b} iff there is a clause C € F such that {/;, b} C C.
m Example: Rg, = {{Xx1, X2}, {X1, Xa}, {Xo, Xa}, {X2, Xa} }
m If the 2-SAT formula is satisfiable, then F is Hidden Horn

m If x; = true in ¢, then x; needs to be renamed to X;
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Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

Fg :{{X_17 X7, X3}7 {X_27 X_4}7 {X1 ’ X5}7 {X3}}

How to hard is it to solve a Mixed Horn formula?
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Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

Fg :{{X_17 X7, X3}v {X_27 X_4}7 {X1 ’ X5}7 {X3}}

How to hard is it to solve a Mixed Horn formula?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn, non-binary clause C = {h, b, k, ... },
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Mixed Horn

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

Fg :{{X_17 X7, X3}v {X_27 X_4}7 {X1 ’ X5}7 {X3}}

How to hard is it to solve a Mixed Horn formula?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn, non-binary clause C = {h, b, k, ... },
m for each but one positive /; € C introduce a new variable // and replace /; in C by /!

m add clauses {/, i}, {I, I} to establish /; = I/
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Next up: CNF Encodings

m Tractable Subclasses
m Algorithms for 2-SAT and Horn-SAT
m Hidden Horn

m Complexity of Mixed Horn
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Next up: CNF Encodings

m Tractable Subclasses
m Algorithms for 2-SAT and Horn-SAT
m Hidden Horn

m Complexity of Mixed Horn

CNF Encodings

m Tseitin Encoding
m Cardinality Constraints

m Finite Domain Encodings
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Encoding Circuits

Given a propositional formula F with operations A, Vv, and —, how can it be encoded in CNF?

Example (CNF Conversion)

F==((—xVYy)A(=zA=(xA-=w))) (Given Formula)

Naive / Direct Conversion
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Encoding Circuits

Given a propositional formula F with operations A, Vv, and —, how can it be encoded in CNF?

Example (CNF Conversion)

F==((—xVYy)A(=zA=(xA-=w))) (Given Formula)

=(XA=Y)VZV(XA-Ww) (Negation Normal Form)

Naive / Direct Conversion

m Convert to Negation Normal Form (NNF)
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Encoding Circuits

Given a propositional formula F with operations A, Vv, and —, how can it be encoded in CNF?

Example (CNF Conversion)

F==((-xVy)A(—zA=(xA-w))) (Given Formula)
=(XAy)VzZV(XA-W) (Negation Normal Form)
=(XVZ)AN(XVZVW)A(-yVZVX)AN(-yVzV-w) (Conjunctive Normal Form)

Naive / Direct Conversion

m Convert to Negation Normal Form (NNF)
m Apply distributive law to get CNF

m Problem: Applying the distributive law may result in an exponential blow-up.
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Tseitin Encoding

Idea: Introduce new variables for subformulas.

Example (Tseitin Conversion)

F=(XAN-y)vzVv(xA-w) (Negation Normal Form)

SAT (

CoOXAW)A---AN(f<aVDb) AT (Tseitin Encoding)

m Define new variables: a«< x Ay, f<+ avb,
m Encode definitions in CNF: (fvav b) A (fva)A(fVb)A...

m One additional clause (f) to assert that F must be true

AT



Tseitin Encoding

Idea: Introduce new variables for subformulas.

Example (Tseitin Conversion)

F=(XAN-y)vzVv(xA-w) (Negation Normal Form)

SAT (

CoOXAW)A---AN(f<aVDb) AT (Tseitin Encoding)
m Define new variables: a«< x Ay, f<+ avb,

m Encode definitions in CNF: (fvav b) A (fva)A(fVb)A...

m One additional clause (f) to assert that F must be true

The formulas are equisatisfiable but not equivalent. Why?
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Tseitin Encoding

The Tseitin-Encoding 7 (F) of a propositional formula F over connectives {A,V, -} is specified as follows.

Definition of Tseitin Encoding

T(F) = de ANT*(F) (Root Formula)
(T (F)ANT(G)AT*(H), ifF=GoHandoe {A,V}
T*(F) = { Taet(F) A T7(G), if F=-G (Recursion)
| True, if F eV
r(d_F\/ dg) A (deVdy) A(deVdgVady), fF=GAH
Toet(F) = (deVdgVdy)V (deVdg) A(drVdy), ifF=GVH (Definitions)
| (dr v dg) A (dF V dg), if F=-G

7 (F) introduces a new variable dg for each subformula S of F and is satisfiable iff F is satisfiable.
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Tseitin Encoding

Example (Tseitin Encoding)

a, Sa C, SC
— —
F={xn-y)v(zV(xA-w)) (Encoding / Auxiliary Variables)
ber

\ >4

N~

f

SéT,]::ief(SC) A %ef(sb) A %ef(sa) A 7::ief(F) AT

ZA(fva)A(fvb)A(fvavb) Af

%ef(F)

(Tseitin Encoding)

S XA-W)A--A(feraVb)Af

Simplification: treat negative literals like variables in 7(F)
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Tseitin Encoding: Plaisted-Greenbaum Optimization

Example (From Tseitin to Plaisted-Greenbaum)

Vv
(bvzve)A(bVvZ)A(bVE)
(CVX)A(CVW)A(cV XV w)

AT



Tseitin Encoding: Plaisted-Greenbaum Optimization

Example (From Tseitin to Plaisted-Greenbaum)

Relaxed Transformation: Exploit Don’t Cares in monotonic functions
Model Duplication: Under-constrained encoding variables introduce additional models
Semantic Relationship: 7T(F) = TP8(F) & F

AT



Tseitin Encoding: Plaisted-Greenbaum Optimization

Definition of

T(F)=de AT'(F)

(TP (F)ATP(G)ATP(H), ifF=GoHandoe{A,V}
TP(F) = { TE(F) A TPPY(G), it F= -G

| True, if F eV

(@F Vv dg) A (dF vV dy), if F=GAH
Taei(F) = (de V dg V di), if F=GVH

(dr V dg), if F =G

((de v dg v dh), tF=GAH
wi(F) =< (deVdg)A(deVvdy), ifF=GVH

| (dF V da), if F = -G
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Recap

Elementary Encoding Techniques: Tseitin Transformation

m Tseitin encoding allows to carry over structure to CNF

m Formula size linear in the number of subformulas (of bounded arity)

Encoding Cardinality Constraints
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At-Most-One Constraints

Not more than one literal from xy, ..., X, is set to True.

Direct / Pairwise Encoding

E[<1 (X1, .., x0)] = {{X, %} |1 <i<j<n} Size: (2) = 1) clauses
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At-Most-One Constraints

Not more than one literal from xy, ..., X, is set to True.

Direct / Pairwise Encoding

E[<1 (X1, .., x0)] = {{X, %} |1 <i<j<n} Size: (2) = 1) clauses

Different Encodings: Size Complexity and Consistency

Encoding Clauses Enc. Variables Consistency
Pairwise Encoding O(n?) 0 direct

Tree Encoding O(nlogn) logn propagate
Ladder Encoding O(n) n propagate
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Cardinality Constraints

Not more than k literals from xy, ..., x, are set to True.
Direct Encoding
E[<k(Xt,....x%)] = {{Xiy, .-, X} |1 <ip <+ <iksr < N} Size: (,,) clauses’

'~ 2"/\/n by Stirling’s Approx. for the worst case k = [n/2]
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Cardinality Constraints

Not more than k literals from xy, ..., x, are set to True.

Direct Encoding

E[<k(Xt,....x%)] = {{Xiy, .-, X} |1 <ip <+ <iksr < N} Size: (,,) clauses’

Different Encodings: Size Complexity and Consistency

Encoding Clauses Enc. Variables Consistency
Direct Encoding (k71) 0 direct
Sequential Counter Encoding O(n-k) O(n-Kk) propagate
Parallel Counter Encoding O(n) O(n) search

'~ 2"/\/n by Stirling’s Approx. for the worst case k = [n/2]
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Cardinality Constraints

Example (Sequential Counter Encoding
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Recap

Elementary Encodings

m Tseitin Transformation
m Tseitin encoding allows to carry over structure to CNF

m Formula size linear in the number of subformulas (of bounded arity)

m Cardinality Constraints
m Size of complexity vs. Complexity of consistency

m Choice of encoding matters

Finite Domain Encodings
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Finite-Domain Variables

Common in combinatorial problems. Discrete, finite value domains: x € {vy,..., vy}

Relationships between them expressed as equality-formulas, e.g.: x = v3 = y # .

Direct / One-hot encoding

m Boolean variables x,: “x takes value v”

m Must encode that each variable takes exactly one value from its domain
(by using at-least-one/at-most-one constraints)

m Encoding of variables’ constraints simple

AT
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Finite-Domain Variables

Common in combinatorial problems: finite domain variables, e.g.: x € {vy,..., Vy}

Relationships between them expressed as equality-formulas, e.g.: x = v3 = y # .

Log / Binary encoding

m Boolean variables b* for 0 < i < [log, n]

m Each value gets assigned a binary number, e.g. vi — 00, v> — 01,v3 — 10

m Inadmissible values must be excluded, e.g.:
x € {v1, v, v3} requires (b5 v b¥)

m Encoding of constraints can become complicated
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Recap

Tractable Subclasses

m Algorithms for 2-SAT and Horn-SAT
m Hidden Horn

m Complexity of Mixed Horn

Elementary Encodings

m Tseitin Transformation
m Cardinality Constraints

m Finite Domain Encodings
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