

# **Practical SAT Solving**

Lecture 2 – Tractable Subclasses, Encodings Markus Iser, Dominik Schreiber | April 29, 2025



## **Overview**

#### Recap. Lecture 1

- Satisfiability: Propositional Logic, CNF Formulas, NP-completeness, Applications
- Examples: Pythagorean Triples, Arithmetic Progressions, k-Colorability
- Incremental SAT: IPASIR, Sample Code

#### Today's Topics

- Tractable Subclasses
- Constraint Encodings
- Encoding Techniques



## **Tractable Subclasses**

Do you know any?



## **Tractable Subclasses**

#### Tractable Subclasses

#### 2-SAT

Exactly two literals per clause

#### HORN-SAT

At most one positive literal per clause

#### Inverted HORN-SAT

At most one negative literal per clause

#### Positive / Negative

Literals occur only pure (either positive or negative)

#### **XOR-SAT**

No clauses, only XOR constraints



## 2-SAT

Each clause has exactly two literals.

#### Example (2-SAT Formulas)

 $F_7 = \{\{\neg x_1, x_2\}, \{\neg x_2, x_3\}, \{\neg x_3, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$ 



## 2-SAT

Each clause has exactly two literals.

#### Example (2-SAT Formulas)

 $F_7 = \{\{\neg x_1, x_2\}, \{\neg x_2, x_3\}, \{\neg x_3, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$ 

#### Linear Time Algorithm for 2-SAT

Construct Implication Graph:

Directed graph with a vertex for each literal and two edges  $\neg l_1 \rightarrow l_2$  and  $\neg l_2 \rightarrow l_1$  for each clause  $\{l_1, l_2\}$ 

- Find Strongly Connected Components (SCC): In an SCC, there is a path from every vertex to every other vertex.
- Check for existence of complementary literals in the same SCC Tarjan's algorithm finds SCCs in O(|V| + |E|)



## 2-SAT

Each clause has exactly two literals.

#### Example (2-SAT Formulas)

$$F_7 = \{\{\neg x_1, x_2\}, \{\neg x_2, x_3\}, \{\neg x_3, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$$

#### Linear Time Algorithm for 2-SAT

Construct Implication Graph:

Directed graph with a vertex for each literal and two edges  $\neg l_1 \rightarrow l_2$  and  $\neg l_2 \rightarrow l_1$  for each clause  $\{l_1, l_2\}$ 

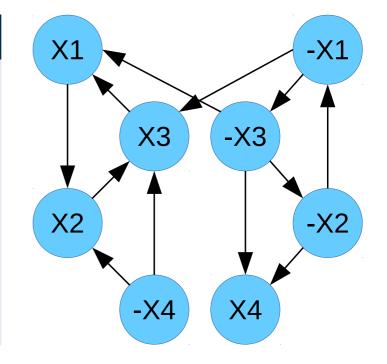
- Find Strongly Connected Components (SCC): In an SCC, there is a path from every vertex to every other vertex.
- Check for existence of complementary literals in the same SCC Tarjan's algorithm finds SCCs in O(|V| + |E|)

What does it mean if x and  $\neg x$  are in the same SCC?



#### Example (Implication Graph)

 $F_7 = \{\{\neg x_1, x_2\}, \{\neg x_2, x_3\}, \{\neg x_3, x_1\}, \{x_2, x_4\}, \{x_3, x_4\}, \{x_1, x_3\}\}$ 



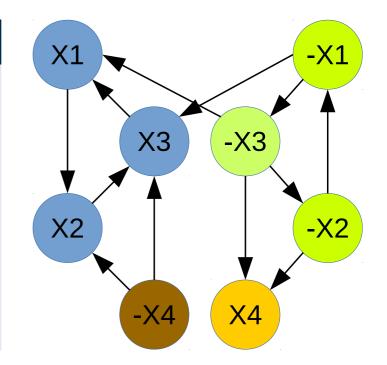


#### Example (Implication Graph)

 $\textit{F}_{7} = \{\{\neg\textit{x}_{1},\textit{x}_{2}\},\{\neg\textit{x}_{2},\textit{x}_{3}\},\{\neg\textit{x}_{3},\textit{x}_{1}\},\{\textit{x}_{2},\textit{x}_{4}\},\{\textit{x}_{3},\textit{x}_{4}\},\{\textit{x}_{1},\textit{x}_{3}\}\}$ 

If an SCC contains both x and  $\neg x$ , the formula is UNSAT

Because *x* implies its own negation and vice versa. Literals in an SCC must be either all true or all false.





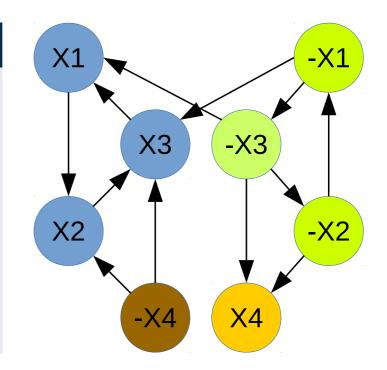
#### Example (Implication Graph)

 $\textit{F}_{7} = \{\{\neg\textit{x}_{1},\textit{x}_{2}\},\{\neg\textit{x}_{2},\textit{x}_{3}\},\{\neg\textit{x}_{3},\textit{x}_{1}\},\{\textit{x}_{2},\textit{x}_{4}\},\{\textit{x}_{3},\textit{x}_{4}\},\{\textit{x}_{1},\textit{x}_{3}\}\}$ 

If an SCC contains both x and  $\neg x$ , the formula is UNSAT

Because *x* implies its own negation and vice versa. Literals in an SCC must be either all true or all false.

What about SAT? How to get a solution?





#### Example (Implication Graph)

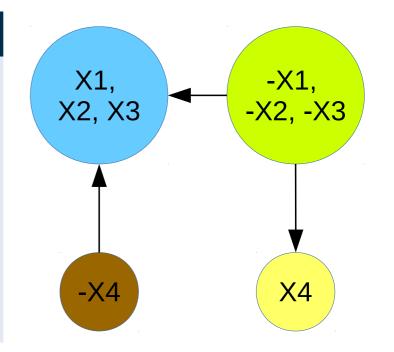
 $\textit{F}_{7} = \{\{\neg\textit{x}_{1},\textit{x}_{2}\},\{\neg\textit{x}_{2},\textit{x}_{3}\},\{\neg\textit{x}_{3},\textit{x}_{1}\},\{\textit{x}_{2},\textit{x}_{4}\},\{\textit{x}_{3},\textit{x}_{4}\},\{\textit{x}_{1},\textit{x}_{3}\}\}$ 

If an SCC contains both x and  $\neg x$ , the formula is UNSAT

Because *x* implies its own negation and vice versa. Literals in an SCC must be either all true or all false.

What about SAT? How to get a solution?

Contract each SCC into one vertex. In reverse topological order, set unassigned literals to true.





## HornSAT

Each clause contains at most one positive literal.

#### Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

 $F_6 = \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\} \equiv \left(x_1 \to x_2\right) \land \left( (x_1 \land x_2) \to x_3 \right) \land \left( \top \to x_1 \right)$ 



## HornSAT

Each clause contains at most one positive literal.

#### Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

$$F_6 = \left\{ \{\overline{x_1}, x_2\}, \{\overline{x_1}, \overline{x_2}, x_3\}, \{x_1\} \right\} \equiv (x_1 \to x_2) \land \left( (x_1 \land x_2) \to x_3 \right) \land \left( \top \to x_1 \right)$$

#### Solving Horn Formulas

- Propagate until fixpoint
- If  $\top \rightarrow \bot$  then the formula is UNSAT, otherwise it is SAT.
- Construct a satisfying assignment by setting the remaining variables to false



## Hidden Horn a.k.a. Renamable or Disguised Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

 $F_8 = \{\{x_1, x_2, x_4\}, \{x_2, \overline{x_4}\}, \{x_1\}\} \rightsquigarrow \{\{\overline{x_1}, \overline{x_2}, x_4\}, \{\overline{x_2}, \overline{x_4}\}, \{\overline{x_1}\}\}$ 

How to recognize a Hidden Horn formula? And how to hard is it?



## Hidden Horn a.k.a. Renamable or Disguised Horn

A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

$$\textit{F}_8 = \{\{\textit{x}_1,\textit{x}_2,\textit{x}_4\},\{\textit{x}_2,\overline{\textit{x}_4}\},\{\textit{x}_1\}\} \rightsquigarrow \{\{\overline{\textit{x}_1},\overline{\textit{x}_2},\textit{x}_4\},\{\overline{\textit{x}_2},\overline{\textit{x}_4}\},\{\overline{\textit{x}_1}\}\}$$

#### How to recognize a Hidden Horn formula? And how to hard is it?

#### Recognizing Hidden Horn Formula F

Construct 2-SAT formula  $R_F$  that contains the clause  $\{I_1, I_2\}$  iff there is a clause  $C \in F$  such that  $\{I_1, I_2\} \subseteq C$ .

- Example:  $R_{F_8} = \{\{x_1, x_2\}, \{x_1, x_4\}, \{x_2, x_4\}, \{x_2, \overline{x_4}\}\}$
- If the 2-SAT formula is satisfiable, then *F* is Hidden Horn
- If  $x_i = true$  in  $\phi$ , then  $x_i$  needs to be renamed to  $\overline{x}_i$



## **Mixed Horn**

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

| Example (Mixed Horn Formula)                                                                                   |  |
|----------------------------------------------------------------------------------------------------------------|--|
| $F_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$ |  |

How to hard is it to solve a Mixed Horn formula?



## **Mixed Horn**

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)  $F_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$ 

How to hard is it to solve a Mixed Horn formula?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn, non-binary clause  $C = \{I_1, I_2, I_3, ...\},\$ 



## **Mixed Horn**

A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)  $F_9 = \{\{\overline{x_1}, \overline{x_7}, x_3\}, \{\overline{x_2}, \overline{x_4}\}, \{x_1, x_5\}, \{x_3\}\}$ 

How to hard is it to solve a Mixed Horn formula?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn, non-binary clause  $C = \{I_1, I_2, I_3, \dots\},\$ 

for each but one positive  $I_i \in C$  introduce a new variable  $I'_i$  and replace  $I_i$  in C by  $\overline{I'_i}$ 

• add clauses  $\{I'_i, I_i\}, \{\overline{I'_i}, \overline{I_i}\}$  to establish  $I_i = \overline{I'_i}$ 



# Next up: CNF Encodings

#### Recap.

- Tractable Subclasses
- Algorithms for 2-SAT and Horn-SAT
- Hidden Horn
- Complexity of Mixed Horn



# **Next up: CNF Encodings**

#### Recap.

- Tractable Subclasses
- Algorithms for 2-SAT and Horn-SAT
- Hidden Horn
- Complexity of Mixed Horn

#### **CNF** Encodings

- Tseitin Encoding
- Cardinality Constraints
- Finite Domain Encodings



# **Encoding Circuits**

Given a propositional formula *F* with operations  $\land$ ,  $\lor$ , and  $\neg$ , how can it be encoded in CNF?

Example (CNF Conversion)

 $F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$ 

(Given Formula)

Naive / Direct Conversion

10/23 April 29, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving



# **Encoding Circuits**

Given a propositional formula *F* with operations  $\land$ ,  $\lor$ , and  $\neg$ , how can it be encoded in CNF?

# Example (CNF Conversion) $F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$ $= (x \land \neg y) \lor z \lor (x \land \neg w)$ (Given Formula)(Negation Normal Form)

#### Naive / Direct Conversion

Convert to Negation Normal Form (NNF)

10/23 April 29, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving



# **Encoding Circuits**

Given a propositional formula *F* with operations  $\land$ ,  $\lor$ , and  $\neg$ , how can it be encoded in CNF?

#### Example (CNF Conversion)

 $F = \neg((\neg x \lor y) \land (\neg z \land \neg(x \land \neg w)))$ 

 $= (x \land \neg y) \lor z \lor (x \land \neg w)$ 

 $= (x \lor z) \land (x \lor z \lor \neg w) \land (\neg y \lor z \lor x) \land (\neg y \lor z \lor \neg w)$ 

(Given Formula)

(Negation Normal Form)

(Conjunctive Normal Form)

#### Naive / Direct Conversion

- Convert to Negation Normal Form (NNF)
- Apply distributive law to get CNF
- Problem: Applying the distributive law may result in an exponential blow-up.



Idea: Introduce new variables for subformulas.

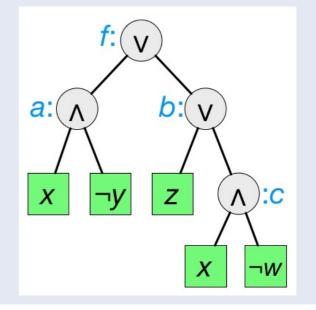
Example (Tseitin Conversion)

- $F = (x \land \neg y) \lor z \lor (x \land \neg w)$ 
  - $\stackrel{\text{\tiny SAT}}{=} (c \leftrightarrow x \land \neg w) \land \cdots \land (f \leftrightarrow a \lor b) \land f$

(Negation Normal Form)

(Tseitin Encoding)

- Define new variables:  $a \leftrightarrow x \wedge \overline{y}$ ,  $f \leftrightarrow a \lor b$ , ...
- Encode definitions in CNF:  $(\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land \ldots$
- One additional clause (f) to assert that F must be true





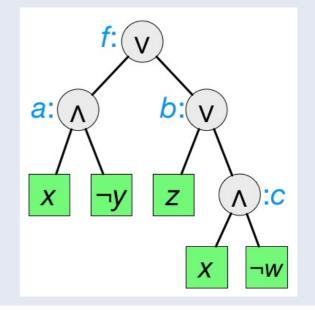
Idea: Introduce new variables for subformulas.

Example (Tseitin Conversion)

- $F = (x \land \neg y) \lor z \lor (x \land \neg w)$ 
  - $\stackrel{\text{sat}}{=} (c \leftrightarrow x \land \neg w) \land \cdots \land (f \leftrightarrow a \lor b) \land f$
- (Negation Normal Form)

∧ f (Tseitin Encoding)

- **Define new variables:**  $a \leftrightarrow x \wedge \overline{y}$ ,  $f \leftrightarrow a \lor b$ , ...
- Encode definitions in CNF:  $(\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b}) \land \ldots$
- One additional clause (f) to assert that F must be true



The formulas are equisatisfiable but not equivalent. Why?

11/23 April 29, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving



The Tseitin-Encoding  $\mathcal{T}(F)$  of a propositional formula F over connectives  $\{\wedge, \lor, \neg\}$  is specified as follows.

**Definition of Tseitin Encoding** 

 $\mathcal{T}(F) = d_F \wedge \mathcal{T}^*(F)$ (Root Formula)  $\mathcal{T}^*(F) = \begin{cases} \mathcal{T}_{def}(F) \wedge \mathcal{T}^*(G) \wedge \mathcal{T}^*(H), & \text{if } F = G \circ H \text{ and } o \in \{\wedge, \lor\} \\ \mathcal{T}_{def}(F) \wedge \mathcal{T}^*(G), & \text{if } F = \neg G \\ \mathcal{T}_{rue}, & \text{if } F \in \mathcal{V} \end{cases}$ (Recursion)  $\mathcal{T}_{def}(F) = \begin{cases} (\overline{d_F} \lor d_G) \wedge (\overline{d_F} \lor d_H) \wedge (d_F \lor \overline{d_G} \lor \overline{d_H}), & \text{if } F = G \land H \\ (\overline{d_F} \lor d_G \lor d_H) \lor (d_F \lor \overline{d_G}) \wedge (d_F \lor \overline{d_H}), & \text{if } F = G \lor H \\ (\overline{d_F} \lor \overline{d_G}) \wedge (d_F \lor \overline{d_G}), & \text{if } F = \neg G \end{cases}$ (Definitions)

 $\mathcal{T}(F)$  introduces a new variable  $d_S$  for each subformula S of F and is satisfiable iff F is satisfiable.



#### Example (Tseitin Encoding)

$$F = \underbrace{(x \land \neg y)}_{f} \lor \underbrace{(z \lor (x \land \neg w))}_{b, S_{b}} \qquad (\text{Encoding / Auxiliary Variables})$$

$$\overset{\text{SAT}}{=} \mathcal{T}_{def}(S_{c}) \land \mathcal{T}_{def}(S_{b}) \land \mathcal{T}_{def}(S_{a}) \land \mathcal{T}_{def}(F) \land f$$

$$\overset{\text{SAT}}{=} \cdots \land \underbrace{(f \lor \overline{a}) \land (f \lor \overline{b}) \land (\overline{f} \lor a \lor b)}_{\mathcal{T}_{def}(F)} \land f$$
(Tseitin Encoding)
$$\overset{\text{SAT}}{=} (c \leftrightarrow x \land \neg w) \land \cdots \land (f \leftrightarrow a \lor b) \land f$$

Simplification: treat negative literals like variables in  $\mathcal{T}(F)$ 

13/23 April 29, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving



## **Tseitin Encoding: Plaisted-Greenbaum Optimization**

Example (From Tseitin to Plaisted-Greenbaum)

 $\mathcal{T}(F) = f \land (f \leftrightarrow a \lor b) \land (a \leftrightarrow x \land \neg y) \land (b \leftrightarrow z \lor c) \land (c \leftrightarrow x \land \neg w)$ 

 $= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b})$   $\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y)$   $\land (\overline{b} \lor z \lor c) \land (b \lor \overline{z}) \land (b \lor \overline{c})$  $\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w)$ 



## **Tseitin Encoding: Plaisted-Greenbaum Optimization**

Example (From Tseitin to Plaisted-Greenbaum)

 $\mathcal{T}^{PG}(F) = f \land (f \to a \lor b) \land (a \to x \land \neg y) \land (b \to z \lor c) \land (c \to x \land \neg w)$   $= f \land (\overline{f} \lor a \lor b) \land (f \lor \overline{a}) \land (f \lor \overline{b})$   $\land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (a \lor \overline{x} \lor y)$   $\land (\overline{b} \lor z \lor c) \land (\overline{b} \lor \overline{z}) \land (b \lor \overline{c})$   $\land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w}) \land (c \lor \overline{x} \lor w)$   $\stackrel{\text{SAT}}{=} (a \lor b) \land (\overline{a} \lor x) \land (\overline{a} \lor \overline{y}) \land (\overline{b} \lor z \lor c) \land (\overline{c} \lor x) \land (\overline{c} \lor \overline{w})$ 

Relaxed Transformation: Exploit *Don't Cares* in monotonic functions Model Duplication: Under-constrained encoding variables introduce additional models Semantic Relationship:  $\mathcal{T}(F) \models \mathcal{T}^{PG}(F) \models F$ 



## **Tseitin Encoding: Plaisted-Greenbaum Optimization**

#### Definition of

 $\mathcal{T}(F) = d_F \wedge \mathcal{T}^1(F)$  $\mathcal{T}^{p}(F) = \begin{cases} \mathcal{T}^{p}_{def}(F) \land \mathcal{T}^{p}(G) \land \mathcal{T}^{p}(H), & \text{if } F = G \circ H \text{ and } \circ \in \{\land, \lor\} \\ \mathcal{T}^{p}_{def}(F) \land \mathcal{T}^{p \oplus 1}(G), & \text{if } F = \neg G \\ \mathcal{T}^{rue}, & \text{if } F \in \mathcal{V} \end{cases}$  $\mathcal{T}_{def}^{1}(F) = \begin{cases} (\overline{d_{F}} \lor d_{G}) \land (\overline{d_{F}} \lor d_{H}), & \text{if } F = G \land H \\ (\overline{d_{F}} \lor d_{G} \lor d_{H}), & \text{if } F = G \lor H \\ (\overline{d_{F}} \lor \overline{d_{G}}), & \text{if } F = \neg G \end{cases}$   $\mathcal{T}_{def}^{0}(F) = \begin{cases} (d_{F} \lor \overline{d_{G}} \lor \overline{d_{H}}), & \text{if } F = G \land H \\ (d_{F} \lor \overline{d_{G}}) \land (d_{F} \lor \overline{d_{H}}), & \text{if } F = G \lor H \\ (d_{F} \lor d_{G}), & \text{if } F = \neg G \end{cases}$ 

15/23 April 29, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving





#### Elementary Encoding Techniques: Tseitin Transformation

- Tseitin encoding allows to carry over structure to CNF
- Formula size linear in the number of subformulas (of bounded arity)

#### Next Up

**Encoding Cardinality Constraints** 



# **At-Most-One Constraints**

#### Notation: AtMostOne $(x_1, \ldots, x_n)$ or $\leq 1 (x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq 1$

Not more than one literal from  $x_1, \ldots, x_n$  is set to True.

**Direct / Pairwise Encoding** 

 $\mathcal{E}\left[ \leq 1 \left( x_1, \ldots, x_n \right) \right] = \left\{ \{ \overline{x_i}, \overline{x_j} \} \mid 1 \leq i < j \leq n \right\}$ 



Size:  $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$  clauses

# **At-Most-One Constraints**

## Notation: AtMostOne $(x_1, \ldots, x_n)$ or $\leq 1 (x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq 1$

Not more than one literal from  $x_1, \ldots, x_n$  is set to True.

Direct / Pairwise Encoding

 $\mathcal{E}\big[ \leq \mathbf{1} (x_1, \ldots, x_n) \big] = \big\{ \{ \overline{x_i}, \overline{x_j} \} \mid \mathbf{1} \leq i < j \leq n \big\}$ 

#### Different Encodings: Size Complexity and Consistency

| Encoding          | Clauses                 | Enc. Variables | Consistency |
|-------------------|-------------------------|----------------|-------------|
| Pairwise Encoding | $\mathcal{O}(n^2)$      | 0              | direct      |
| Tree Encoding     | $\mathcal{O}(n \log n)$ | log <i>n</i>   | propagate   |
| Ladder Encoding   | $\mathcal{O}(n)$        | n              | propagate   |



Size:  $\binom{n}{2} = \frac{n \cdot (n-1)}{2}$  clauses

# **Cardinality Constraints**

#### Notation: $\leq k(x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq k$

Not more than *k* literals from  $x_1, \ldots, x_n$  are set to True.

**Direct Encoding** 

 $\mathcal{E}\left[\leq k\left(x_{1},\ldots,x_{n}\right)\right] = \left\{\left\{\overline{x_{i_{1}}},\ldots,\overline{x_{i_{k+1}}}\right\} \mid 1 \leq i_{1} < \cdots < i_{k+1} \leq n\right\}$ 

 $1 \approx 2^n / \sqrt{n}$  by Stirling's Approx. for the worst case  $k = \lceil n/2 \rceil$ 



Size:  $\binom{n}{k+1}$  clauses<sup>1</sup>

# **Cardinality Constraints**

## Notation: $\leq k(x_1, \ldots, x_n)$ or $\sum_i^n x_i \leq k$

Not more than k literals from  $x_1, \ldots, x_n$  are set to True.

**Direct Encoding** 

$$\mathcal{E}\left[\leq k\left(x_{1},\ldots,x_{n}\right)\right] = \left\{\left\{\overline{x_{i_{1}}},\ldots,\overline{x_{i_{k+1}}}\right\} \mid 1 \leq i_{1} < \cdots < i_{k+1} \leq n\right\}$$

#### Different Encodings: Size Complexity and Consistency

| Encoding                    | Clauses                  | Enc. Variables           | Consistency |
|-----------------------------|--------------------------|--------------------------|-------------|
| Direct Encoding             | $\binom{n}{k+1}$         | 0                        | direct      |
| Sequential Counter Encoding | $\mathcal{O}(n \cdot k)$ | $\mathcal{O}(n \cdot k)$ | propagate   |
| Parallel Counter Encoding   | $\mathcal{O}(n)$         | $\mathcal{O}(n)$         | search      |

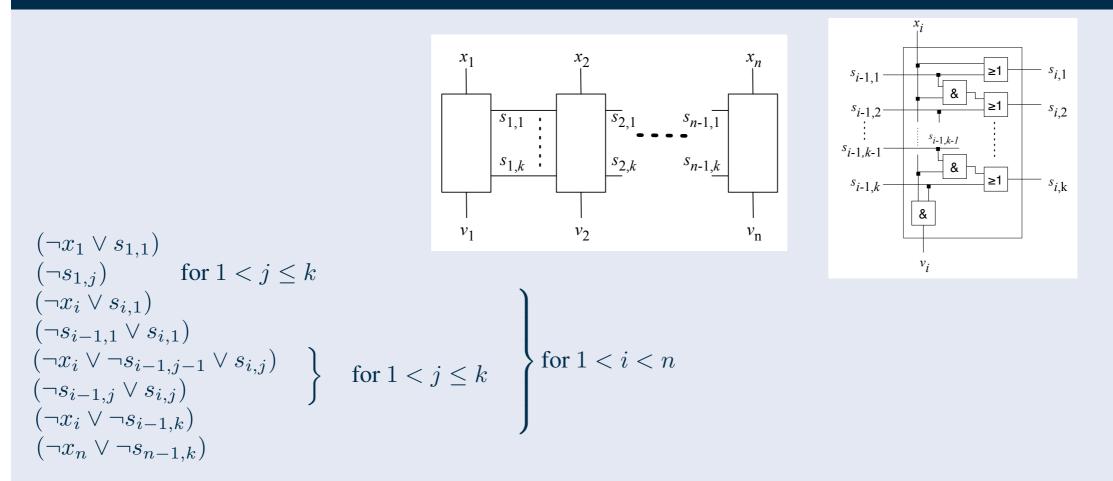
 $1 \approx 2^n / \sqrt{n}$  by Stirling's Approx. for the worst case  $k = \lceil n/2 \rceil$ 



Size:  $\binom{n}{k+1}$  clauses<sup>1</sup>

# **Cardinality Constraints** $\left(\sum_{i}^{n} x_{i} \leq k\right)$

#### Example (Sequential Counter Encoding Sinz, 2005)





## Recap

#### Elementary Encodings

#### Tseitin Transformation

- Tseitin encoding allows to carry over structure to CNF
- Formula size linear in the number of subformulas (of bounded arity)

#### Cardinality Constraints

- Size of complexity vs. Complexity of consistency
- Choice of encoding matters

#### Next Up

Finite Domain Encodings



## **Finite-Domain Variables**

Common in combinatorial problems. Discrete, finite value domains:  $x \in \{v_1, \ldots, v_n\}$ 

Relationships between them expressed as equality-formulas, e.g.:  $x = v_3 \Rightarrow y \neq v_2$ .

#### Direct / One-hot encoding

- Boolean variables  $x_v$ : "x takes value v"
- Must encode that each variable takes exactly one value from its domain (by using at-least-one/at-most-one constraints)
- Encoding of variables' constraints simple



## **Finite-Domain Variables**

Common in combinatorial problems: finite domain variables, e.g.:  $x \in \{v_1, \ldots, v_n\}$ 

Relationships between them expressed as equality-formulas, e.g.:  $x = v_3 \Rightarrow y \neq v_2$ .

Log / Binary encoding

- Boolean variables  $b_i^x$  for  $0 \le i < \lceil \log_2 n \rceil$
- Each value gets assigned a binary number, e.g.  $v_1 \rightarrow 00, v_2 \rightarrow 01, v_3 \rightarrow 10$
- Inadmissible values must be excluded, e.g.:  $x \in \{v_1, v_2, v_3\}$  requires  $(\overline{b_0^x} \vee \overline{b_1^x})$
- Encoding of constraints can become complicated



## Recap

#### Tractable Subclasses

- Algorithms for 2-SAT and Horn-SAT
- Hidden Horn
- Complexity of Mixed Horn
- **Elementary Encodings**
- Tseitin Transformation
- Cardinality Constraints
- Finite Domain Encodings

