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Recap. Lecture 1

Satisfiability: Propositional Logic, CNF Formulas, NP-completeness, Applications

Examples: Pythagorean Triples, Arithmetic Progressions, k-Colorability

Incremental SAT: IPASIR, Sample Code

Today’s Topics

Tractable Subclasses

Constraint Encodings

Encoding Techniques
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Overview



Do you know any?

Tractable Subclasses (cf. Schaefer, 1978)

2-SAT
Exactly two literals per clause

HORN-SAT
At most one positive literal per clause

Inverted HORN-SAT
At most one negative literal per clause

Positive / Negative
Literals occur only pure (either positive or negative)

XOR-SAT
No clauses, only XOR constraints
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Each clause has exactly two literals.

Example (2-SAT Formulas)

F7 = {{¬x1, x2}, {¬x2, x3}, {¬x3, x1}, {x2, x4}, {x3, x4}, {x1, x3}}

Linear Time Algorithm for 2-SAT (cf. Aspvall et al., 1979)

Construct Implication Graph:

Directed graph with a vertex for each literal and two edges ¬l1 → l2 and ¬l2 → l1 for each clause {l1, l2}

Find Strongly Connected Components (SCC): In an SCC, there is a path from every vertex to every other vertex.

Check for existence of complementary literals in the same SCC
Tarjan’s algorithm finds SCCs in O(|V | + |E |)

What does it mean if x and ¬x are in the same SCC?
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Example (Implication Graph)

F7 = {{¬x1, x2}, {¬x2, x3}, {¬x3, x1}, {x2, x4}, {x3, x4}, {x1, x3}}

If an SCC contains both x and ¬x , the formula is UNSAT

Because x implies its own negation and vice versa.
Literals in an SCC must be either all true or all false.

What about SAT? How to get a solution?

Contract each SCC into one vertex.
In reverse topological order, set unassigned literals to true.

X1

X3

X2

-X4

-X1

-X3

-X2

X4
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-X4

-X1, 
-X2, -X3
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X2, X3
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Each clause contains at most one positive literal.

Example (Horn Formula)

Each clause can be written as an implication with positive literals only and a single consequent:

F6 =
{
{x1, x2}, {x1, x2, x3}, {x1}

}
≡

(
x1 → x2

)
∧
(
(x1 ∧ x2) → x3

)
∧
(
⊤ → x1

)

Solving Horn Formulas

Propagate until fixpoint

If ⊤ → ⊥ then the formula is UNSAT, otherwise it is SAT.

Construct a satisfying assignment by setting the remaining variables to false
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A CNF formula is Hidden Horn if it can be made Horn by flipping the polarity of some of its variables.

Example (Hidden Horn Formula)

F8 = {{x1, x2, x4}, {x2, x4}, {x1}}⇝ {{x1, x2, x4}, {x2, x4}, {x1}}

How to recognize a Hidden Horn formula? And how to hard is it?

Recognizing Hidden Horn Formula F

Construct 2-SAT formula RF that contains the clause {l1, l2} iff there is a clause C ∈ F such that {l1, l2} ⊆ C.

Example: RF8 = {{x1, x2}, {x1, x4}, {x2, x4}, {x2, x4}}

If the 2-SAT formula is satisfiable, then F is Hidden Horn

If xi = true in ϕ, then xi needs to be renamed to x i
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A CNF formula is Mixed Horn if it contains only binary and Horn clauses.

Example (Mixed Horn Formula)

F9 ={{x1, x7, x3}, {x2, x4}, {x1, x5}, {x3}}

How to hard is it to solve a Mixed Horn formula?

Mixed Horn is NP-complete

Proof: Reduce SAT to Mixed Horn SAT

For each non-Horn, non-binary clause C = {l1, l2, l3, . . . },
for each but one positive li ∈ C introduce a new variable l ′i and replace li in C by l ′i
add clauses {l ′i , li}, {l ′i , li} to establish li = l ′i
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Recap.

Tractable Subclasses

Algorithms for 2-SAT and Horn-SAT

Hidden Horn

Complexity of Mixed Horn

CNF Encodings

Tseitin Encoding

Cardinality Constraints

Finite Domain Encodings
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Given a propositional formula F with operations ∧, ∨, and ¬, how can it be encoded in CNF?

Example (CNF Conversion)

F =¬((¬x ∨ y) ∧ (¬z ∧ ¬(x ∧ ¬w))) (Given Formula)

= (x ∧ ¬y) ∨ z ∨ (x ∧ ¬w) (Negation Normal Form)

= (x ∨ z) ∧ (x ∨ z ∨ ¬w) ∧ (¬y ∨ z ∨ x) ∧ (¬y ∨ z ∨ ¬w) (Conjunctive Normal Form)

Naive / Direct Conversion

Convert to Negation Normal Form (NNF)

Apply distributive law to get CNF

Problem: Applying the distributive law may result in an exponential blow-up.
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Idea: Introduce new variables for subformulas.

Example (Tseitin Conversion)

F = (x ∧ ¬y) ∨ z ∨ (x ∧ ¬w) (Negation Normal Form)

SAT
= (c ↔ x ∧ ¬w) ∧ · · · ∧ (f ↔ a ∨ b) ∧ f (Tseitin Encoding)

Define new variables: a ↔ x ∧ y , f ↔ a ∨ b, . . .

Encode definitions in CNF: (f ∨ a ∨ b) ∧ (f ∨ a) ∧ (f ∨ b) ∧ . . .

One additional clause (f ) to assert that F must be true

The formulas are equisatisfiable but not equivalent. Why?
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The Tseitin-Encoding T (F ) of a propositional formula F over connectives {∧,∨,¬} is specified as follows.

Definition of Tseitin Encoding

T (F ) = dF ∧ T ∗(F ) (Root Formula)

T ∗(F ) =





Tdef(F ) ∧ T ∗(G) ∧ T ∗(H), if F = G ◦ H and ◦ ∈ {∧,∨}
Tdef(F ) ∧ T ∗(G), if F = ¬G
True, if F ∈ V

(Recursion)

Tdef(F ) =





(dF ∨ dG) ∧ (dF ∨ dH) ∧ (dF ∨ dG ∨ dH), if F = G ∧ H
(dF ∨ dG ∨ dH) ∨ (dF ∨ dG) ∧ (dF ∨ dH), if F = G ∨ H
(dF ∨ dG) ∧ (dF ∨ dG), if F = ¬G

(Definitions)

T (F ) introduces a new variable dS for each subformula S of F and is satisfiable iff F is satisfiable.
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Example (Tseitin Encoding)

F =

a, Sa︷ ︸︸ ︷
(x ∧ ¬y)∨ (z ∨

c, Sc︷ ︸︸ ︷
(x ∧ ¬w))︸ ︷︷ ︸
b, Sb︸ ︷︷ ︸

f

(Encoding / Auxiliary Variables)

SAT
=Tdef(Sc) ∧ Tdef(Sb) ∧ Tdef(Sa) ∧ Tdef(F ) ∧ f

SAT
= · · · ∧ (f ∨ a) ∧ (f ∨ b) ∧ (f ∨ a ∨ b)︸ ︷︷ ︸

Tdef(F )

∧ f (Tseitin Encoding)

SAT
= (c ↔ x ∧ ¬w) ∧ · · · ∧ (f ↔ a ∨ b) ∧ f

Simplification: treat negative literals like variables in T (F )
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Example (From Tseitin to Plaisted-Greenbaum)

T (F ) = f ∧ (f ↔ a ∨ b) ∧ (a ↔ x ∧ ¬y) ∧ (b ↔ z ∨ c) ∧ (c ↔ x ∧ ¬w)

= f ∧ (f ∨ a ∨ b) ∧ (f ∨ a) ∧ (f ∨ b)
∧ (a ∨ x) ∧ (a ∨ y) ∧ (a ∨ x ∨ y)
∧ (b ∨ z ∨ c) ∧ (b ∨ z) ∧ (b ∨ c)
∧ (c ∨ x) ∧ (c ∨ w) ∧ (c ∨ x ∨ w)
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Example (From Tseitin to Plaisted-Greenbaum)

T PG(F ) = f ∧ (f→a ∨ b) ∧ (a→x ∧ ¬y) ∧ (b→z ∨ c) ∧ (c→x ∧ ¬w)

= f ∧ (f ∨ a ∨ b) ∧ (f ∨ a) ∧ (f ∨ b)
∧ (a ∨ x) ∧ (a ∨ y) ∧ (a ∨ x ∨ y)
∧ (b ∨ z ∨ c) ∧ (b ∨ z) ∧ (b ∨ c)
∧ (c ∨ x) ∧ (c ∨ w) ∧ (c ∨ x ∨ w)

SAT
= (a ∨ b) ∧ (a ∨ x) ∧ (a ∨ y) ∧ (b ∨ z ∨ c) ∧ (c ∨ x) ∧ (c ∨ w)

Relaxed Transformation: Exploit Don’t Cares in monotonic functions

Model Duplication: Under-constrained encoding variables introduce additional models

Semantic Relationship: T (F ) |= T PG(F ) |= F
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Definition of Plaisted Greenbaum Encoding

T (F ) = dF ∧ T 1(F )

T p(F ) =





T p
def(F ) ∧ T p(G) ∧ T p(H), if F = G ◦ H and ◦ ∈ {∧,∨}

T p
def(F ) ∧ T p⊕1(G), if F = ¬G

True, if F ∈ V

T 1
def(F ) =





(dF ∨ dG) ∧ (dF ∨ dH), if F = G ∧ H
(dF ∨ dG ∨ dH), if F = G ∨ H
(dF ∨ dG), if F = ¬G

T 0
def(F ) =





(dF ∨ dG ∨ dH), if F = G ∧ H
(dF ∨ dG) ∧ (dF ∨ dH), if F = G ∨ H
(dF ∨ dG), if F = ¬G
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Elementary Encoding Techniques: Tseitin Transformation

Tseitin encoding allows to carry over structure to CNF

Formula size linear in the number of subformulas (of bounded arity)

Next Up

Encoding Cardinality Constraints
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Not more than one literal from x1, . . . , xn is set to True.

Direct / Pairwise Encoding

E
[
≤1 (x1, . . . , xn)

]
=

{
{xi , xj} | 1 ≤ i < j ≤ n

}
Size:

(n
2

)
= n·(n−1)

2 clauses

Different Encodings: Size Complexity and Consistency

Encoding Clauses Enc. Variables Consistency

Pairwise Encoding O(n2) 0 direct

Tree Encoding O(n log n) log n propagate

Ladder Encoding O(n) n propagate
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Not more than k literals from x1, . . . , xn are set to True.

Direct Encoding

E
[
≤k (x1, . . . , xn)

]
=

{
{xi1, . . . , xik+1} | 1 ≤ i1 < · · · < ik+1 ≤ n

}
Size:

( n
k+1

)
clauses1

Different Encodings: Size Complexity and Consistency

Encoding Clauses Enc. Variables Consistency

Direct Encoding
( n

k+1

)
0 direct

Sequential Counter Encoding O(n · k) O(n · k) propagate

Parallel Counter Encoding O(n) O(n) search

1≈ 2n/
√

n by Stirling’s Approx. for the worst case k = ⌈n/2⌉
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Example (Sequential Counter Encoding Sinz, 2005)
3
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Fig. 1. Left: Circuit for computing k (x1, . . . , xn). si,j denotes the j-th digit of the i-th partial
sum si in unary representation; variables vi are overflow bits, indicating that the i-th partial sum
is greater than k. Right: Sub-circuit for computing a partial sum si in unary representation.

Theorem 1. LTn,k
SEQ is a clausal encoding of  k (x1, . . . , xn) requiring O(n · k)

clauses and O(n · k) auxiliary variables.

The encoding LTn,k
SEQ also fulfills the efficiency condition given by Bailleux and

Boufkhad [3]. If more than k variables are set to true (which violates the cardinality
constraint k (x1, . . . , xn)), this can be detected by unit propagation alone, i.e. by a
linear time decision procedure. Moreover, for a partial assignment that sets k of the
variables xi to true, the value of all other xi’s can be derived by unit propagation.

3 Encoding Using a Parallel Counter

The second encoding we present is based on a parallel counter circuit designed by
Muller and Preparata [7]. Their counter (shown in Fig. 2) recursively splits the input
bits xi into two halves, and counts the number of inputs that are set to true in each
half. The results—represented as binary numbers—are then added using a standard m-
bit binary adder. In order to obtain a circuit for cardinality constraints based on this
counter, the output bits of the counter are handed on to a subsequent comparator which
checks whether or not the counter value is less than k. (The comparator is not shown in
Fig. 2.)

Parallel Counter Circuit. The parallel counter consists of n � blog nc � 1 full-adders
and at most blog nc half-adders, as was shown by Muller and Preparata (‘log’ denoting
the logarithmus dualis). The encoding of each half-adder and full-adder is based on
the well-known equations for these circuits. We finally obtain three clauses {(a _ ¬b _
sout), (¬a_¬b_ cout), (¬a_ b_ sout)} for each half-adder (computing a� b) and seven
clauses

(a _ b _ ¬c _ sout) (¬a _ b _ c _ sout) (¬a _ ¬b _ cout)
(a _ ¬b _ c _ sout) (¬a _ ¬b _ ¬c _ sout) (¬a _ ¬c _ cout)

(¬b _ ¬c _ cout)
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allowed. Formally, we are looking for an optimal encoding (typically minimizing the
number of clauses) according to the following definition.

Definition 1. A clause set E over the variables V = {x1, . . . , xn, s1, . . . , sm} is a
clausal encoding of k (x1, . . . , xn) if for all assignments ↵ : {x1, . . . , xn} ! B the
following holds: there is an extension of ↵ to ↵⇤ : V ! B that is a model of E if and
only if ↵ is a model of k (x1, . . . , xn), i.e. if and only if at most k of the variables xi

are set to 1 by ↵.

2 Encoding Using a Sequential Counter

We now give a CNF encoding for cardinality constraints of the form k (x1, . . . , xn)
that is based on a sequential counter circuit. The circuit is shown in Fig. 1 and computes
partial sums si =

Pi
j=1 xj for increasing values of i up to the final i = n. The values

of all si’s are represented as unary numbers. The overflow bits vi are set to true if the
partial sum si is greater than k.

To convert this circuit to CNF, we first build defining equations for the partial sum
bits si,j and the overflow bits vi. We then simplify these equations, noting that all over-
flow bits have to be zero. The resulting equations are then converted to CNF, further
noting that one direction of the equations can be dropped due to polarity considerations
(the basic technique was introduced by Tseitin [5], and later re-invented and extended
by different authors, e.g. Jackson and Sheridan [6]). We thus arrive at a set of clauses,
call it LTn,k

SEQ, defining the cardinality constraint k (x1, . . . , xn) based on the sequen-
tial counter (for k > 0 and n > 1):

(¬x1 _ s1,1)
(¬s1,j) for 1 < j  k
(¬xi _ si,1)
(¬si�1,1 _ si,1)
(¬xi _ ¬si�1,j�1 _ si,j)
(¬si�1,j _ si,j)

�
for 1 < j  k

(¬xi _ ¬si�1,k)

9
>>>>=
>>>>;

for 1 < i < n

(¬xn _ ¬sn�1,k)

LTn,k
SEQ consists of 2nk + n � 3k � 1 clauses and requires (n � 1) · k auxiliary

variables for the encoding. Due to its practical importance, we explicitly give the clause
set LTn,1

SEQ (for the case k = 1, as a formula):

(¬x1_s1,1)^(¬xn_¬sn�1,1)^
^

1<i<n

✓
(¬xi_si,1)^(¬si�1,1_si,1)^(¬xi_¬si�1,1)

◆

This clause set consists of 3n� 4 clauses (and n� 1 additional encoding variables) and
is thus—with regard to the number of clauses—superior to the naı̈ve encoding for all
n > 5. The following theorem summarizes our results.1.

1 Due to space limitations we do not give proofs here. They can be found, however, on the Web
at http://www-sr.informatik.uni-tuebingen.de/˜sinz/CardConstraints
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Elementary Encodings

Tseitin Transformation
Tseitin encoding allows to carry over structure to CNF

Formula size linear in the number of subformulas (of bounded arity)

Cardinality Constraints
Size of complexity vs. Complexity of consistency

Choice of encoding matters

Next Up

Finite Domain Encodings
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Recap



Common in combinatorial problems. Discrete, finite value domains: x ∈ {v1, . . . , vn}
Relationships between them expressed as equality-formulas, e.g.: x = v3 ⇒ y ̸= v2.

Direct / One-hot encoding

Boolean variables xv : “x takes value v”

Must encode that each variable takes exactly one value from its domain
(by using at-least-one/at-most-one constraints)

Encoding of variables’ constraints simple
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Finite-Domain Variables



Common in combinatorial problems: finite domain variables, e.g.: x ∈ {v1, . . . , vn}
Relationships between them expressed as equality-formulas, e.g.: x = v3 ⇒ y ̸= v2.

Log / Binary encoding

Boolean variables bx
i for 0 ≤ i < ⌈log2 n⌉

Each value gets assigned a binary number, e.g. v1 → 00, v2 → 01, v3 → 10

Inadmissible values must be excluded, e.g.:
x ∈ {v1, v2, v3} requires (bx

0 ∨ bx
1)

Encoding of constraints can become complicated
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Finite-Domain Variables



Tractable Subclasses

Algorithms for 2-SAT and Horn-SAT

Hidden Horn

Complexity of Mixed Horn

Elementary Encodings

Tseitin Transformation

Cardinality Constraints

Finite Domain Encodings
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