

Practical SAT Solving

Lecture 3 – Elementary SAT Solving Algorithms Markus Iser, Dominik Schreiber | May 5, 2025

Overview

Recap. Lecture 2

- Tractable Subclasses
- Constraint Encodings
- Encoding Techniques

Today's Topics: Elementary SAT Algorithms

- Local Search
- Resolution
- DP Algorithm
- DPLL Algorithm

Minimize the Number of Unsatisfied Clauses

Start with a random complete variable assignment α :

Repeatedly flip variables in α to decrease the number of unsatisfied clauses:

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

Which variable should be flipped next?

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

- Which variable should be flipped next?
 - select variable from an unsatisfied clause
 - select variable that maximizes the number of satisfied clauses
- How to avoid getting stuck in local minima?

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

- Which variable should be flipped next?
 - select variable from an unsatisfied clause
 - select variable that maximizes the number of satisfied clauses
- How to avoid getting stuck in local minima?
 - Randomization!

Classic SLS Algorithms

GSAT

Greedy local search algorithm	Algorithm: GSAT Input: ClauseSet S Output: Assignment α , or Nothing	
	1 for $i = 1$ to MAX_TRIES do 2 $\alpha = random$ -assignment to variable 3 for $j = 1$ to MAX_FLIPS do 4 if α satisfies all clauses in S then 5 $x = variable$ that produces least 1 when flipped 6 flip x	es in S n return α number of unsatisfied clauses
	7 return Nothing	<pre>// no solution found</pre>

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

SLS: Local Minima

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

Classic SLS Algorithms

WalkSAT

Variant of GSAT

Try to avoid local minima by introducing random noise.

_	
ļ	Algorithm: WalkSAT(S)
1 f	or $i = 1$ to MAX_TRIES do
2	α = random-assignment to variables in <i>S</i>
3	for $j = 1$ to MAX_FLIPS do
4	if α satisfies all clauses in S then return α
5	C = random unsatisfied clause in S
6	if by flipping an $x \in C$ no new unsatisfied clauses emerges
	then flip x
7	else with probability p flip an $x \in C$ at random
8	otherwise, flip a variable that changes the least number of
	clauses from satisfied to unsatisfied
9 r	eturn Nothing // no solution found

SLS: Important Notions

Consider a flip taking α to α'

breakcount number of clauses satisfied in α , but not satisfied in α'

makecount number of clauses not satisfied in α , but satisfied in α'

diffscore # unsatisfied clauses in α – # unsatisfied clauses in α'

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

SLS: Important Notions

Consider a flip taking α to α'

breakcount number of clauses satisfied in α , but not satisfied in α'

makecount number of clauses not satisfied in α , but satisfied in α'

diffscore # unsatisfied clauses in α – # unsatisfied clauses in α'

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

GSAT select variable with highest diffscore

WalkSAT select variable with minimal breakcount

Legacy of SLS

- Extremely successful and popular in early days of SAT
 - SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - for example, state of the art engine for automated planning in the 90s

Legacy of SLS

- Extremely successful and popular in early days of SAT
 - SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - for example, state of the art engine for automated planning in the 90s

Today, sophisticated resolution-based systematic search solvers dominate in most practical applications

Faster, more reliable, and complete!

Legacy of SLS

- Extremely successful and popular in early days of SAT
 - SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
 - for example, state of the art engine for automated planning in the 90s

Today, sophisticated resolution-based systematic search solvers dominate in most practical applications

Faster, more reliable, and complete!

Still useful as a component in more complex solvers

- Part of (parallel) algorithm portfolios
- Control branching heuristics in complete search algorithms
- Detection of autarkies in formula simplification algorithms
- In combination with complete solvers for optimization problems (e.g., MaxSAT)

Elementary Algorithms

Local Search

- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Elementary Algorithms

Local Search

- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Next Up

Resolution

The Resolution Rule

 $\frac{P_1 \cup \{x\} \qquad P_2 \cup \{\neg x\}}{P_1 \cup P_2}$

Resolution is a logical inference rule, which infers a conclusion (resolvent) from given premises (input clauses).

The Resolution Rule

 $\frac{P_1 \cup \{x\} \qquad P_2 \cup \{\neg x\}}{P_1 \cup P_2}$

Resolution is a logical inference rule, which infers a conclusion (resolvent) from given premises (input clauses).

Example (Resolution)

$$\{x_1, x_3, \neg x_7\}, \{\neg x_1, x_2\} \vdash \{x_3, \neg x_7, x_2\}$$

$$\{x_4, x_5\}, \{\neg x_5\} \vdash \{x_4\}$$
(Fact)
$$\{x_1, x_2\}, \{\neg x_1, \neg x_2\} \vdash \{x_1, \neg x_1\}$$

$$\{x_1\}, \{\neg x_1\} \vdash \{\}$$
(Empty Clause)

Theorem: Resolution is sound

Given a CNF formula *F* with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Theorem: Resolution is sound

Given a CNF formula F with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let $C_1 := \{x\} \cup P_1$ and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Theorem: Resolution is sound

Given a CNF formula F with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let $C_1 := \{x\} \cup P_1$ and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Any satisfying assignment ϕ of F satisfies both C_1 and C_2 . If ϕ satisfies x, then it satisfies some literal in P_2 . Otherwise, ϕ satisfies $\neg x$ and thus satisfies some literal in P_1 . As such, ϕ also satisfies D.

Theorem: Resolution is sound

Given a CNF formula F with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let $C_1 := \{x\} \cup P_1$ and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Any satisfying assignment ϕ of F satisfies both C_1 and C_2 . If ϕ satisfies x, then it satisfies some literal in P_2 . Otherwise, ϕ satisfies $\neg x$ and thus satisfies some literal in P_1 . As such, ϕ also satisfies D.

Equivalence: $F \vdash F \land D \implies F \land D \models F$

Theorem: Resolution is sound

Given a CNF formula F with two resolvable clauses $C_1, C_2 \subseteq F$ with resolvent $R(C_1, C_2)$, the following holds:

 $F \equiv F \wedge R(C_1, C_2)$

Proof

Let $C_1 := \{x\} \cup P_1$ and $C_2 := \{\neg x\} \cup P_2$ such that $R(C_1, C_2) = P_1 \cup P_2 =: D$.

Soundness: $F \vdash F \land D \implies F \models F \land D$

Any satisfying assignment ϕ of F satisfies both C_1 and C_2 . If ϕ satisfies x, then it satisfies some literal in P_2 . Otherwise, ϕ satisfies $\neg x$ and thus satisfies some literal in P_1 . As such, ϕ also satisfies D.

Equivalence: $F \vdash F \land D \implies F \land D \models F$

Since *D* does not introduce new variables, $F \wedge D$ can not have more satisfying assignments than *F*.

Resolution is sound and Refutation-complete

- If we manage to infer the empty clause from a CNF formula *F*, then *F* is unsatisfiable. (sound)
- If *F* is unsatisfiable, then there exists a refutation by resolution. (refutation-complete)
- Not all possible consequences of *F* can be derived by resolution. ("only" refutation-complete)

Resolution Proof

A resolution proof for *F* is a sequence of clauses $\langle C_1, C_2, \ldots, C_{k-1}, C_k = \emptyset \rangle$ where each C_i is either an original clause of *F* or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$F = \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}$$

(Formula) (Refutation)

Resolution is sound and Refutation-complete

- If we manage to infer the empty clause from a CNF formula *F*, then *F* is unsatisfiable. (sound)
- If *F* is unsatisfiable, then there exists a refutation by resolution. (refutation-complete)
- Not all possible consequences of *F* can be derived by resolution. ("only" refutation-complete)

Resolution Proof

A resolution proof for *F* is a sequence of clauses $\langle C_1, C_2, \ldots, C_{k-1}, C_k = \emptyset \rangle$ where each C_i is either an original clause of *F* or a resolvent of two earlier clauses.

Example (Resolution Proof)

$$F = \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}$$
(Formula
$$\equiv \{x_1, x_2\}, \{\neg x_1, x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, \neg x_2\}, \{x_2\}, \{\neg x_2\}, \{\}$$
(Refutation

Saturation Algorithm

Algorithm: Saturation Algorithm Input: CNF formula *F* Output: {SAT, UNSAT}

- 1 while true do
- 2 $R := \operatorname{resolveAll}(F)$
- 3 if $R \cap F \neq R$ then $F := F \cup R$
- 4 else break
- \mathfrak{s} if $\bot \in F$ then return UNSAT
- 6 else return SAT

Saturation Algorithm

Algorithm: Saturation Algorithm Input: CNF formula *F* Output: {SAT, UNSAT}

- 1 while true do
- 2 $R := \operatorname{resolveAll}(F)$
- 3 if $R \cap F \neq R$ then $F := F \cup R$
- 4 else break
- \mathfrak{s} if $\bot \in F$ then return UNSAT
- 6 else return SAT

Properties

- sound and complete always terminates and answers correctly
- exponential time and space complexity

Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e., has size one.

Example (Unit Resolution)

 $\mathsf{R}((x_1 \lor x_7 \lor \neg x_2 \lor x_4), (x_2)) = (x_1 \lor x_7 \lor x_4)$

Unit Propagation

Unit Resolution

Resolution where at least one of the resolved clauses is a unit clause, i.e., has size one.

Example (Unit Resolution)

 $\mathsf{R}((x_1 \lor x_7 \lor \neg x_2 \lor x_4), (x_2)) = (x_1 \lor x_7 \lor x_4)$

Unit Propagation

Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)

Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

 $\{x_1, x_2, x_3\}, \{x_1, \neg x_2\}, \{\neg x_1\} \vdash_1 \{\neg x_2\}, \{x_3\}$

Recap

Elementary Algorithms

Local Search

- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Resolution

- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)
- Unit Propagation

Recap

Elementary Algorithms

Local Search

- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Resolution

- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)
- Unit Propagation

Next Up

Improving upon saturation-based resolution: Davis Putnam (DP) Algorithm

Davis-Putnam Algorithm (Davis & Putnam, 1960)

Presented in 1960 as a SAT procedure for first-order logic.

Deduction Rules of DP Algorithm

- **Unit Resolution:** If there is a unit clause $C = {\overline{x}} \in F$, simplify all other clauses containing x
- **Pure Literal Elimination:** If a literal x never occurs negated in F, add clause $\{x\}$ to F
- **Case Splitting:** Put *F* in the form $(A \lor x) \land (B \lor \neg x) \land R$, where *A*, *B*, and *R* are clause sets free of *x*. Replace *F* by the clausification of $(A \lor B) \land R$

Apply above deduction rules (prioritizing rules 1 and 2) until one of the following situations occurs:

- $\blacksquare F = \emptyset \quad \rightarrow \mathsf{SAT}$
- $\blacksquare \ \emptyset \in \textbf{\textit{F}} \quad \rightarrow \text{UNSAT}$

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x)

Example (DP Algorithm)

$F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, \neg z, \neg z\}, $	$z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$	(Split by x)
$A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} B = \{\{y, u\}, \{\neg y, \neg z\}\}$	$\neg y, u$ } $R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$	$((A \lor B) \land R)$

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x) $A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\}$ $B = \{\{y, u\}, \{\neg y, u\}\}$ $R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ ((A \le B) \le R) $F_1 = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ (Split by y)

Example (DP Algorithm)

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \\ B &= \{\{y, u\}, \{\neg y, u\}\} \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ A_1 &= \{\{\neg z, u\}\} \\ B_1 &= \{\{\neg z, u\}\} \\ R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ \end{split}$$
 (Split by y) ((A \lor B_1) \land R_1)) ((A \lor B_1) \land R_1)) \\ (A_1 \lor B_1) \land R_1 = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ (A_1 \lor B_1) \land R_1) \land R_1) \\ (A_1 \lor B_1) \land R_1) \\ (A_1 \lor B_1) \land R_1)

Example (DP Algorithm)

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \\ B &= \{\{y, u\}, \{\neg y, u\}\} \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ (A \lor B) \land R) \\ (A \lor B) \land$$

Example (DP Algorithm)

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \\ B &= \{\{y, u\}, \{\neg y, u\}\} \\ R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ (A \lor B) \land R) \\ (A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ A_1 &= \{\{\gamma z, u\}\} \\ B_1 &= \{\{\neg z, u\}\} \\ R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ (A_1 \lor B_1) \land R_1) \\ (A_1 \lor B_1) \land R_1) \\ F_2 &= \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} \\ A_2 &= \{\{v\}, \{\neg v\}\} \\ B_2 &= \{\{u\}, \{\neg u\}\} \\ R_2 &= \{\} \\ (A_2 \lor B_2) \land R_2) \\ (A_2 \lor B_2) \land R_2) \end{split}$$

Example (DP Algorithm)

$$\begin{split} F &= \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\} & \text{(Split by } x) \\ A &= \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} & B &= \{\{y, u\}, \{\neg y, u\}\} & R &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A \lor B) \land R) \\ F_1 &= \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by y) \\ A_1 &= \{\{\gamma z, u\}\} & B_1 &= \{\{\neg z, u\}\} & R_1 &= \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & ((A_1 \lor B_1) \land R_1) \\ F_2 &= \{\{\neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\} & (Split by z) \\ A_2 &= \{\{v\}, \{\neg v\}\} & B_2 &= \{\{u\}, \{\neg u\}\} & R_2 &= \{\} & ((A_2 \lor B_2) \land R_2) \\ F_3 &= \{\{u, v\}, \{u, \neg v\}, \{\neg u, \nu\}\} & (Split by u) \\ \end{split}$$

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x) $A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \quad B = \{\{y, u\}, \{\neg y, u\}\} \quad R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ $((A \lor B) \land R)$ $F_{1} = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ (Split by y) $A_1 = \{\{\neg z, u\}\} \quad B_1 = \{\{\neg z, u\}\} \quad B_1 = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ $((A_1 \vee B_1) \wedge R_1)$ $F_2 = \{\{\neg Z, U\}, \{Z, V\}, \{Z, \neg V\}, \{\neg Z, \neg U\}\}$ (Split by *z*) $A_2 = \{\{v\}, \{\neg v\}\}$ $B_2 = \{\{u\}, \{\neg u\}\}$ $R_2 = \{\}$ $((A_2 \vee B_2) \wedge R_2)$ $F_3 = \{\{u, v\}, \{u, \neg v\}, \{\neg u, v\}, \{\neg u, \neg v\}\}$ (Split by *u*) $A_3 = \{\{v\}, \{\neg v\}\}$ $B_3 = \{\{v\}, \{\neg v\}\}$ $R_3 = \{\}$ $((A_3 \vee B_3) \wedge R_3)$

Example (DP Algorithm)

 $F = \{\{x, y, \neg z, u\}, \{\neg x, y, u\}, \{x, \neg y, \neg z\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}, \{\neg x, \neg y, u\}\}$ (Split by x) $A = \{\{y, \neg z, u\}, \{\neg y, \neg z\}\} \quad B = \{\{y, u\}, \{\neg y, u\}\} \quad R = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ $((A \lor B) \land R)$ $F_{1} = \{\{y, \neg z, u\}, \{\neg y, \neg z, u\}, \{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ (Split by y) $A_1 = \{\{\neg z, u\}\} \quad B_1 = \{\{\neg z, u\}\} \quad B_1 = \{\{z, v\}, \{z, \neg v\}, \{\neg z, \neg u\}\}$ $((A_1 \vee B_1) \wedge R_1)$ $F_{2} = \{\{\neg Z, U\}, \{Z, V\}, \{Z, \neg V\}, \{\neg Z, \neg U\}\}$ (Split by *z*) $A_2 = \{\{v\}, \{\neg v\}\}$ $B_2 = \{\{u\}, \{\neg u\}\}$ $R_2 = \{\}$ $((A_2 \vee B_2) \wedge R_2)$ $F_3 = \{\{u, v\}, \{u, \neg v\}, \{\neg u, v\}, \{\neg u, \neg v\}\}$ (Split by *u*) $A_3 = \{\{v\}, \{\neg v\}\} \quad B_3 = \{\{v\}, \{\neg v\}\} \quad B_3 = \{\}$ $((A_3 \vee B_3) \wedge R_3)$ $F_4 = \{\{v\}, \{\neg v\}\} \vdash_1 \{\emptyset\}$ (Unit Resolution)

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same <-maximal variable
- Bucket Elimination: process buckets in decreasing *≺*-order
 - resolve all clauses in bucket
 - put resolvents in fitting bucket

Example (Bucket Elimination)

$\mathbf{F} = \{(\mathbf{x}, \mathbf{y}, \overline{\mathbf{z}}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{y}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{u}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}, \mathbf{u}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{u}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}), (\overline{\mathbf{x}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}, \mathbf{u}$	$(x,\overline{y},\overline{z}),(z,v),(z,v)$	$(\mathbf{Z},\overline{\mathbf{V}}),(\overline{\mathbf{Z}},\overline{\mathbf{U}}),(\overline{\mathbf{X}},\overline{\mathbf{y}})$	7, u) }
---	---	--	----------------

 $(x \succ y \succ z \succ u \succ v)$

Variable	Bucket
X	$(x, y, \overline{z}, u), (\overline{x}, y, u), (x, \overline{y}, \overline{z}), (\overline{x}, \overline{y}, u)$
У	
Ζ	$(\mathcal{Z},\mathcal{V}),(\mathcal{Z},\overline{\mathcal{V}}),(\overline{\mathcal{Z}},\overline{\mathcal{U}})$
U	
V	

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same *¬*-maximal variable
- Bucket Elimination: process buckets in decreasing *≺*-order
 - resolve all clauses in bucket
 - put resolvents in fitting bucket

Example (Bucket Elimination)

$$(x \succ y \succ z \succ u \succ v)$$

Variable	Bucket
X	processed
У	$(y,\overline{z},u),(\overline{y},\overline{z},u)$
Ζ	$(Z, V), (Z, \overline{V}), (\overline{Z}, \overline{U})$
U	
V	

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same *¬*-maximal variable
- Bucket Elimination: process buckets in decreasing *≺*-order
 - resolve all clauses in bucket
 - put resolvents in fitting bucket

Example (Bucket Elimination)

F = {()	$x, y, \overline{z}, u),$	$(\overline{x}, y, u), ($	$(x,\overline{y},\overline{z}),(z)$	$(z, v), (z, \overline{v}), ($	$(\overline{z},\overline{u}),(\overline{x},\overline{y},u)\}$
---------	---------------------------	---------------------------	-------------------------------------	--	---

$$(x \succ y \succ z \succ u \succ v)$$

Variable	Bucket
X	processed
У	processed
Ζ	$(Z, V), (Z, \overline{V}), (\overline{Z}, \overline{U}), (\overline{Z}, U)$
U	
V	

Bucket Elimination

- Fix order \prec on variables.
- Bucket: set of clauses with same *¬*-maximal variable
- Bucket Elimination: process buckets in decreasing *≺*-order
 - resolve all clauses in bucket
 - put resolvents in fitting bucket

Example (Bucket Elimination)

$F = \{(x, y, \overline{z}, u), (\overline{x}, y, u)\}$	$(x,\overline{y},\overline{z}),(z,v),$	$(z,\overline{v}),(\overline{z},\overline{u}),(\overline{x},\overline{y},u)$
---	--	--

$$(x \succ y \succ z \succ u \succ v)$$

Variable	Bucket
X	processed
У	processed
Ζ	processed
U	$(\overline{u}, v), (u, v), (\overline{u}, \overline{v}), (u, \overline{v})$
V	

Bucket Elimination

- Fix order < on variables.
- Bucket: set of clauses with same <-maximal variable
- Bucket Elimination: process buckets in decreasing *≺*-order
 - resolve all clauses in bucket
 - put resolvents in fitting bucket

Example (Bucket Elimination)

$\mathbf{F} = \{(\mathbf{x}, \mathbf{y}, \overline{\mathbf{z}}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{y}, \mathbf{u}), (\overline{\mathbf{x}}, \mathbf{y}, \mathbf{u}), \mathbf{u}\}$	$(x,\overline{y},\overline{z}),(z,v),$	$(Z,\overline{V}),(\overline{Z},\overline{U}),$	$(\overline{x},\overline{y},u)$
--	--	---	---------------------------------

 $(x \succ y \succ z \succ u \succ v)$

Variable	Bucket
X	processed
У	processed
Ζ	processed
U	processed
V	$(v), (\overline{v})$

Excerpt from Davis' and Putnam's paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation's average time complexity?

Excerpt from Davis' and Putnam's paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation's average time complexity?

 \Rightarrow yes — if we split over the right variables

Excerpt from Davis' and Putnam's paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

- Does DP improve on saturation's average time complexity?
 - \Rightarrow yes if we split over the right variables
- Does DP avoid saturation's exponential space complexity?

Excerpt from Davis' and Putnam's paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on which Gilmore's routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was worked successfully by hand computation using [DP] in 30 minutes.

- Does DP improve on saturation's average time complexity?
 - \Rightarrow yes if we split over the right variables
- Does DP avoid saturation's exponential space complexity?
 - \Rightarrow no quadratic blowup in size for eliminating one variable

DPLL Algorithm (Davis et al., 1962)

Davis Putnam Logemann Loveland (DPLL) Algorithm

- DPLL is a backtracking search over partial variable assignments.
- Case splitting over a variable x branches the search over two cases x and $\neg x$: resulting in the simplified formulas $F_{|x=true}$ and $F_{|x=false}$
- Simplification rules:
 - **Unit Propagation:** If $\{I\} \in F$, I must be set to true.
 - **Pure Literal Elimination:** If *x* occurs only positively (or only negatively), it may be fixed to the respective value.

Algorithm: DPLL(ClauseSet S) Start with 1 while *S* contains a unit clause $\{L\}$ do simplifications; delete from *S* all clauses containing *L* // unit-subsumption 2 delete $\neg L$ from all clauses in S // unit-resolution 3 recurse on 4 if $\emptyset \in S$ then return false // empty clause subformulas obtained 5 while S contains a pure literal L do by case-splitting; delete from S all clauses containing L // pure literal elimination 6 7 if $S = \emptyset$ then return true // no clauses stop if satisfying 8 choose a literal *L* occurring in *S* // case-splitting assignment found or **9 if** $DPLL(S \cup \{\{L\}\})$ then return true // first branch all branches are 10 else if $DPLL(S \cup \{\{\neg L\}\})$ then return true // second branch unsatisfiable. 11 else return false

DPLL Algorithm with Trail

```
Algorithm: trailDPLL(ClauseSet S, PartialAssignment \alpha)
1 while (S, \alpha) contains a unit clause \{L\} do
     add \{L = 1\} to \alpha
                                                          // Unit Propagation
 2
{\bf 3} if a literal is assigned both 0 and 1 in \alpha then
     return false
                                                                     // Conflict
 4
5 if all literals assigned then
     return true
                                                          // Assignment found
 6
7 choose a literal L not assigned in \alpha occurring in S
                                                             // Case Splitting
s if trailDPLL(S, \alpha \cup \{\{L = 1\}\}) then
     return true
                                                                // first branch
 9
10 else if trailDPLL(S, \alpha \cup \{\{L = 0\}\}) then
                                                              // second branch
     return true
11
12 else return false
```

 (S, α) is the clause set *S* as "seen" under partial assignment α

No explicit pure literal elimination (too slow for the benefit it provides)

```
trailDPLL() leads to efficient
iterative DPLL
implementation
```


Properties

DPLL always terminates

Properties

DPLL always terminates

- Each recursion eliminates one variable
- Worst case: binary tree search of depth |V|

DPLL is sound and complete

■ If clause set *S* is SAT,

Properties

DPLL always terminates

- Each recursion eliminates one variable
- Worst case: binary tree search of depth |V|

DPLL is sound and complete

- If clause set *S* is SAT, we eventually find a satisfying α
- If clause set *S* is UNSAT,

Properties

DPLL always terminates

- Each recursion eliminates one variable
- Worst case: binary tree search of depth |V|

DPLL is sound and complete

- If clause set S is SAT, we eventually find a satisfying α
- If clause set *S* is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)
- Space complexity:

Properties

DPLL always terminates

- Each recursion eliminates one variable
- Worst case: binary tree search of depth |V|

DPLL is sound and complete

- If clause set S is SAT, we eventually find a satisfying α
- If clause set *S* is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity: linear!

Systematic search avoids blowup of "unfocused" DP

Recap

Elementary Algorithms

Local Search

- Examples: GSAT, WalkSAT
- Terminology: breakcount, makecount, diffscore

Resolution

- Soundness and Completeness
- Saturation Algorithm (Exponential Complexity)

DP Algorithm

- Systematized Resolution
- Improved Average Time Complexity

DPLL Algorithm

- Case Splitting and Unit Propagation
- Linear Space Complexity

