
Practical SAT Solving

Lecture 3 – Elementary SAT Solving Algorithms
Markus Iser, Dominik Schreiber | May 5, 2025

Recap. Lecture 2

Tractable Subclasses

Constraint Encodings

Encoding Techniques

Today’s Topics: Elementary SAT Algorithms

Local Search

Resolution

DP Algorithm

DPLL Algorithm

2/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Overview

Minimize the Number of Unsatisfied Clauses
Start with a random complete variable assignment α:

Repeatedly flip variables in α to decrease the number of unsatisfied clauses:

3/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

Which variable should be flipped next?

select variable from an unsatisfied clause
select variable that maximizes the number of satisfied clauses

How to avoid getting stuck in local minima?

Randomization!

4/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

Which variable should be flipped next?
select variable from an unsatisfied clause
select variable that maximizes the number of satisfied clauses

How to avoid getting stuck in local minima?

Randomization!

4/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Properties of SLS Algorithms

Local search algorithms are incomplete: They cannot show unsatisfiability!

Challenges:

Which variable should be flipped next?
select variable from an unsatisfied clause
select variable that maximizes the number of satisfied clauses

How to avoid getting stuck in local minima?
Randomization!

4/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

GSAT (Selman et al., 1992)

Greedy local search algorithm Algorithm: GSAT
Input: ClauseSet S
Output: Assignment α, or Nothing

1 for i = 1 to MAX_TRIES do
2 α = random-assignment to variables in S
3 for j = 1 to MAX_FLIPS do
4 if α satisfies all clauses in S then return α

5 x = variable that produces least number of unsatisfied clauses
when flipped

6 flip x
7 return Nothing // no solution found

5/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Classic SLS Algorithms

http://dl.acm.org/citation.cfm?id=1867135.1867203

solution space S

co
st

s0

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

6/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SLS: Local Minima

s∗

solution space S

co
st

s∗′

s0

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

6/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SLS: Local Minima

s∗

solution space S

co
st

s∗′

s′

Perturbation

s0

[Illustration Adapted from: Alan Mackworth, UBC, Canada]

6/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SLS: Local Minima

WalkSAT (Selman et al., 1993)

Variant of GSAT

Try to avoid local minima by
introducing random noise.

Algorithm: WalkSAT(S)
1 for i = 1 to MAX_TRIES do
2 α = random-assignment to variables in S
3 for j = 1 to MAX_FLIPS do
4 if α satisfies all clauses in S then return α

5 C = random unsatisfied clause in S
6 if by flipping an x ∈ C no new unsatisfied clauses emerges

then flip x
7 else with probability p flip an x ∈ C at random
8 otherwise, flip a variable that changes the least number of

clauses from satisfied to unsatisfied
9 return Nothing // no solution found

7/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Classic SLS Algorithms

https://web2.qatar.cmu.edu/~gdicaro/15281/additional/dimacs93-walksat.pdf

Consider a flip taking α to α′

breakcount number of clauses satisfied in α, but not satisfied in α′

makecount number of clauses not satisfied in α, but satisfied in α′

diffscore # unsatisfied clauses in α − # unsatisfied clauses in α′

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

GSAT select variable with highest diffscore

WalkSAT select variable with minimal breakcount

8/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SLS: Important Notions

Consider a flip taking α to α′

breakcount number of clauses satisfied in α, but not satisfied in α′

makecount number of clauses not satisfied in α, but satisfied in α′

diffscore # unsatisfied clauses in α − # unsatisfied clauses in α′

Typically, breakcount, makecount, and/or diffscore are used to select the variable to flip.

Recap using new nomenclature

GSAT select variable with highest diffscore

WalkSAT select variable with minimal breakcount

8/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SLS: Important Notions

Legacy of SLS

Extremely successful and popular in early days of SAT
SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
for example, state of the art engine for automated planning in the 90s

Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
Faster, more reliable, and complete!

Still useful as a component in more complex solvers
Part of (parallel) algorithm portfolios
Control branching heuristics in complete search algorithms
Detection of autarkies in formula simplification algorithms
In combination with complete solvers for optimization problems (e.g., MaxSAT)

9/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Legacy of SLS

Extremely successful and popular in early days of SAT
SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
for example, state of the art engine for automated planning in the 90s

Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
Faster, more reliable, and complete!

Still useful as a component in more complex solvers
Part of (parallel) algorithm portfolios
Control branching heuristics in complete search algorithms
Detection of autarkies in formula simplification algorithms
In combination with complete solvers for optimization problems (e.g., MaxSAT)

9/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Legacy of SLS

Extremely successful and popular in early days of SAT
SLS outperformed early resolution-based solvers, e.g., based on DP or DPLL
for example, state of the art engine for automated planning in the 90s

Today, sophisticated resolution-based systematic search solvers dominate in most practical applications
Faster, more reliable, and complete!

Still useful as a component in more complex solvers
Part of (parallel) algorithm portfolios
Control branching heuristics in complete search algorithms
Detection of autarkies in formula simplification algorithms
In combination with complete solvers for optimization problems (e.g., MaxSAT)

9/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stochastic Local Search (SLS)

Elementary Algorithms

Local Search
Examples: GSAT, WalkSAT

Terminology: breakcount, makecount, diffscore

Next Up

Resolution

10/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

Elementary Algorithms

Local Search
Examples: GSAT, WalkSAT

Terminology: breakcount, makecount, diffscore

Next Up

Resolution

10/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

The Resolution Rule

P1 ∪ {x} P2 ∪ {¬x}
P1 ∪ P2

Resolution is a logical inference rule, which infers a conclusion (resolvent) from given premises (input clauses).

Example (Resolution)

{x1, x3,¬x7}, {¬x1, x2} ⊢ {x3,¬x7, x2}

{x4, x5}, {¬x5} ⊢ {x4} (Fact)

{x1, x2}, {¬x1,¬x2} ⊢ {x1,¬x1} (Tautological Resolvent)

{x1}, {¬x1} ⊢ {} (Empty Clause)

11/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

The Resolution Rule

P1 ∪ {x} P2 ∪ {¬x}
P1 ∪ P2

Resolution is a logical inference rule, which infers a conclusion (resolvent) from given premises (input clauses).

Example (Resolution)

{x1, x3,¬x7}, {¬x1, x2} ⊢ {x3,¬x7, x2}

{x4, x5}, {¬x5} ⊢ {x4} (Fact)

{x1, x2}, {¬x1,¬x2} ⊢ {x1,¬x1} (Tautological Resolvent)

{x1}, {¬x1} ⊢ {} (Empty Clause)

11/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Theorem: Resolution is sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D
Any satisfying assignment ϕ of F satisfies both C1 and C2. If ϕ satisfies x , then it satisfies some literal in P2.
Otherwise, ϕ satisfies ¬x and thus satisfies some literal in P1. As such, ϕ also satisfies D.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F
Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .

12/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Theorem: Resolution is sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D

Any satisfying assignment ϕ of F satisfies both C1 and C2. If ϕ satisfies x , then it satisfies some literal in P2.
Otherwise, ϕ satisfies ¬x and thus satisfies some literal in P1. As such, ϕ also satisfies D.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F
Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .

12/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Theorem: Resolution is sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D
Any satisfying assignment ϕ of F satisfies both C1 and C2. If ϕ satisfies x , then it satisfies some literal in P2.
Otherwise, ϕ satisfies ¬x and thus satisfies some literal in P1. As such, ϕ also satisfies D.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F
Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .

12/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Theorem: Resolution is sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D
Any satisfying assignment ϕ of F satisfies both C1 and C2. If ϕ satisfies x , then it satisfies some literal in P2.
Otherwise, ϕ satisfies ¬x and thus satisfies some literal in P1. As such, ϕ also satisfies D.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F

Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .

12/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Theorem: Resolution is sound
Given a CNF formula F with two resolvable clauses C1,C2 ⊆ F with resolvent R(C1,C2), the following holds:

F ≡ F ∧ R(C1,C2)

Proof
Let C1 := {x} ∪ P1 and C2 := {¬x} ∪ P2 such that R(C1,C2) = P1 ∪ P2 =: D.

Soundness: F ⊢ F ∧ D =⇒ F |= F ∧ D
Any satisfying assignment ϕ of F satisfies both C1 and C2. If ϕ satisfies x , then it satisfies some literal in P2.
Otherwise, ϕ satisfies ¬x and thus satisfies some literal in P1. As such, ϕ also satisfies D.

Equivalence: F ⊢ F ∧ D =⇒ F ∧ D |= F
Since D does not introduce new variables, F ∧ D can not have more satisfying assignments than F .

12/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Resolution is sound and Refutation-complete

If we manage to infer the empty clause from a CNF formula F , then F is unsatisfiable. (sound)

If F is unsatisfiable, then there exists a refutation by resolution. (refutation-complete)

Not all possible consequences of F can be derived by resolution. (“only” refutation-complete)

Resolution Proof
A resolution proof for F is a sequence of clauses ⟨C1,C2, . . . ,Ck−1,Ck = ∅⟩
where each Ci is either an original clause of F or a resolvent of two earlier clauses.

Example (Resolution Proof)

F ={x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2} (Formula)

≡{x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2}, {x2}, {¬x2}, {}

(Refutation)

13/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Resolution is sound and Refutation-complete

If we manage to infer the empty clause from a CNF formula F , then F is unsatisfiable. (sound)

If F is unsatisfiable, then there exists a refutation by resolution. (refutation-complete)

Not all possible consequences of F can be derived by resolution. (“only” refutation-complete)

Resolution Proof
A resolution proof for F is a sequence of clauses ⟨C1,C2, . . . ,Ck−1,Ck = ∅⟩
where each Ci is either an original clause of F or a resolvent of two earlier clauses.

Example (Resolution Proof)

F ={x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2} (Formula)
≡{x1, x2}, {¬x1, x2}, {x1,¬x2}, {¬x1,¬x2}, {x2}, {¬x2}, {} (Refutation)

13/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Algorithm: Saturation Algorithm
Input: CNF formula F
Output: {SAT, UNSAT}

1 while true do
2 R := resolveAll(F)

3 if R ∩ F ̸= R then F := F ∪ R
4 else break
5 if ⊥ ∈ F then return UNSAT
6 else return SAT

Properties
sound and complete – always terminates
and answers correctly
exponential time and space complexity

14/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Saturation Algorithm

Algorithm: Saturation Algorithm
Input: CNF formula F
Output: {SAT, UNSAT}

1 while true do
2 R := resolveAll(F)

3 if R ∩ F ̸= R then F := F ∪ R
4 else break
5 if ⊥ ∈ F then return UNSAT
6 else return SAT

Properties
sound and complete – always terminates
and answers correctly
exponential time and space complexity

14/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Saturation Algorithm

Unit Resolution
Resolution where at least one of the resolved clauses is a unit clause, i.e., has size one.

Example (Unit Resolution)

R((x1 ∨ x7 ∨ ¬x2 ∨ x4), (x2)) = (x1 ∨ x7 ∨ x4)

Unit Propagation

Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)

Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

{x1, x2, x3}, {x1,¬x2}, {¬x1} ⊢1 {¬x2}, {x3}

15/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation

Unit Resolution
Resolution where at least one of the resolved clauses is a unit clause, i.e., has size one.

Example (Unit Resolution)

R((x1 ∨ x7 ∨ ¬x2 ∨ x4), (x2)) = (x1 ∨ x7 ∨ x4)

Unit Propagation

Apply unit resolution until fixpoint is reached.

Example (Unit Propagation)

Usually, we are only interested in the inferred facts (unit clauses) and conflicts (empty clauses).

{x1, x2, x3}, {x1,¬x2}, {¬x1} ⊢1 {¬x2}, {x3}

15/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation

Elementary Algorithms

Local Search
Examples: GSAT, WalkSAT
Terminology: breakcount, makecount, diffscore

Resolution
Soundness and Completeness
Saturation Algorithm (Exponential Complexity)
Unit Propagation

Next Up

Improving upon saturation-based resolution: Davis Putnam (DP) Algorithm

16/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

Elementary Algorithms

Local Search
Examples: GSAT, WalkSAT
Terminology: breakcount, makecount, diffscore

Resolution
Soundness and Completeness
Saturation Algorithm (Exponential Complexity)
Unit Propagation

Next Up

Improving upon saturation-based resolution: Davis Putnam (DP) Algorithm

16/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

Presented in 1960 as a SAT procedure for first-order logic.

Deduction Rules of DP Algorithm

Unit Resolution: If there is a unit clause C = {x} ∈ F , simplify all other clauses containing x

Pure Literal Elimination: If a literal x never occurs negated in F , add clause {x} to F

Case Splitting: Put F in the form (A ∨ x) ∧ (B ∨ ¬x) ∧ R, where A, B, and R are clause sets free of x .
Replace F by the clausification of (A ∨ B) ∧ R

Apply above deduction rules (prioritizing rules 1 and 2) until one of the following situations occurs:
F = ∅ → SAT
∅ ∈ F → UNSAT

17/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm (Davis & Putnam, 1960)

http://doi.acm.org/10.1145/321033.321034

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Example (DP Algorithm)

F = {{x , y ,¬z,u}, {¬x , y ,u}, {x ,¬y ,¬z}, {z, v}, {z,¬v}, {¬z,¬u}, {¬x ,¬y ,u}} (Split by x)

A = {{y ,¬z,u}, {¬y ,¬z}} B = {{y ,u}, {¬y ,u}} R = {{z, v}, {z,¬v}, {¬z,¬u}} ((A ∨ B) ∧ R)

F1 = {{y ,¬z,u}, {¬y ,¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by y)

A1 = {{¬z,u}} B1 = {{¬z,u}} R1 = {{z, v}, {z,¬v}, {¬z,¬u}} ((A1 ∨ B1) ∧ R1)

F2 = {{¬z,u}, {z, v}, {z,¬v}, {¬z,¬u}} (Split by z)

A2 = {{v}, {¬v}} B2 = {{u}, {¬u}} R2 = {} ((A2 ∨ B2) ∧ R2)

F3 = {{u, v}, {u,¬v}, {¬u, v}, {¬u,¬v}} (Split by u)

A3 = {{v}, {¬v}} B3 = {{v}, {¬v}} R3 = {} ((A3 ∨ B3) ∧ R3)

F4 = {{v}, {¬v}} ⊢1 {∅} (Unit Resolution)

18/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Davis-PutnamAlgorithm

Bucket Elimination

Fix order ≺ on variables.
Bucket: set of clauses with same ≺-maximal variable
Bucket Elimination: process buckets in decreasing ≺-order

resolve all clauses in bucket
put resolvents in fitting bucket

Example (Bucket Elimination)

F = {(x , y , z,u), (x , y ,u), (x , y , z), (z, v), (z, v), (z,u), (x , y ,u)} (x ≻ y ≻ z ≻ u ≻ v)

Variable Bucket
x (x , y , z,u), (x , y ,u), (x , y , z), (x , y ,u)
y
z (z, v), (z, v), (z,u)
u
v

19/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPVariant: Bucket Elimination

Bucket Elimination

Fix order ≺ on variables.
Bucket: set of clauses with same ≺-maximal variable
Bucket Elimination: process buckets in decreasing ≺-order

resolve all clauses in bucket
put resolvents in fitting bucket

Example (Bucket Elimination)

F = {(x , y , z,u), (x , y ,u), (x , y , z), (z, v), (z, v), (z,u), (x , y ,u)} (x ≻ y ≻ z ≻ u ≻ v)

Variable Bucket
x processed
y (y , z,u), (y , z,u)
z (z, v), (z, v), (z,u)
u
v

19/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPVariant: Bucket Elimination

Bucket Elimination

Fix order ≺ on variables.
Bucket: set of clauses with same ≺-maximal variable
Bucket Elimination: process buckets in decreasing ≺-order

resolve all clauses in bucket
put resolvents in fitting bucket

Example (Bucket Elimination)

F = {(x , y , z,u), (x , y ,u), (x , y , z), (z, v), (z, v), (z,u), (x , y ,u)} (x ≻ y ≻ z ≻ u ≻ v)

Variable Bucket
x processed
y processed
z (z, v), (z, v), (z,u), (z,u)
u
v

19/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPVariant: Bucket Elimination

Bucket Elimination

Fix order ≺ on variables.
Bucket: set of clauses with same ≺-maximal variable
Bucket Elimination: process buckets in decreasing ≺-order

resolve all clauses in bucket
put resolvents in fitting bucket

Example (Bucket Elimination)

F = {(x , y , z,u), (x , y ,u), (x , y , z), (z, v), (z, v), (z,u), (x , y ,u)} (x ≻ y ≻ z ≻ u ≻ v)

Variable Bucket
x processed
y processed
z processed
u (u, v), (u, v), (u, v), (u, v)
v

19/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPVariant: Bucket Elimination

Bucket Elimination

Fix order ≺ on variables.
Bucket: set of clauses with same ≺-maximal variable
Bucket Elimination: process buckets in decreasing ≺-order

resolve all clauses in bucket
put resolvents in fitting bucket

Example (Bucket Elimination)

F = {(x , y , z,u), (x , y ,u), (x , y , z), (z, v), (z, v), (z,u), (x , y ,u)} (x ≻ y ≻ z ≻ u ≻ v)

Variable Bucket
x processed
y processed
z processed
u processed
v (v), (v)

19/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPVariant: Bucket Elimination

Excerpt from Davis’ and Putnam’s paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on
which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was
worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation’s average time complexity?

⇒ yes — if we split over the right variables

Does DP avoid saturation’s exponential space complexity?

⇒ no — quadratic blowup in size for eliminating one variable

20/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DP: Discussion

Excerpt from Davis’ and Putnam’s paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on
which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was
worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation’s average time complexity?

⇒ yes — if we split over the right variables

Does DP avoid saturation’s exponential space complexity?

⇒ no — quadratic blowup in size for eliminating one variable

20/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DP: Discussion

Excerpt from Davis’ and Putnam’s paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on
which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was
worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation’s average time complexity?

⇒ yes — if we split over the right variables

Does DP avoid saturation’s exponential space complexity?

⇒ no — quadratic blowup in size for eliminating one variable

20/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DP: Discussion

Excerpt from Davis’ and Putnam’s paper

The superiority of the present procedure over those previously available is indicated in part by the fact that a formula on
which Gilmore’s routine for the IBM 704 causes the machine to compute for 21 minutes without obtaining a result was
worked successfully by hand computation using [DP] in 30 minutes.

Does DP improve on saturation’s average time complexity?

⇒ yes — if we split over the right variables

Does DP avoid saturation’s exponential space complexity?

⇒ no — quadratic blowup in size for eliminating one variable

20/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DP: Discussion

Davis Putnam Logemann Loveland (DPLL) Algorithm

DPLL is a backtracking search over partial variable assignments.

Case splitting over a variable x branches the search over two cases x and ¬x :
resulting in the simplified formulas F|x=true and F|x=false

Simplification rules:
Unit Propagation: If {l} ∈ F , l must be set to true.

Pure Literal Elimination: If x occurs only positively (or only negatively), it may be fixed to the respective value.

21/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm (Davis et al., 1962)

http://doi.acm.org/10.1145/368273.368557

Algorithm: DPLL(ClauseSet S)
1 while S contains a unit clause {L} do
2 delete from S all clauses containing L // unit-subsumption
3 delete ¬L from all clauses in S // unit-resolution
4 if ∅ ∈ S then return false // empty clause
5 while S contains a pure literal L do
6 delete from S all clauses containing L // pure literal elimination
7 if S = ∅ then return true // no clauses
8 choose a literal L occurring in S // case-splitting
9 if DPLL(S ∪ {{L}}) then return true // first branch

10 else if DPLL(S ∪ {{¬L}}) then return true // second branch
11 else return false

Start with
simplifications;

recurse on
subformulas obtained
by case-splitting;

stop if satisfying
assignment found or
all branches are
unsatisfiable.

22/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Algorithm: trailDPLL(ClauseSet S, PartialAssignment α)
1 while (S, α) contains a unit clause {L} do
2 add {L = 1} to α // Unit Propagation
3 if a literal is assigned both 0 and 1 in α then
4 return false // Conflict
5 if all literals assigned then
6 return true // Assignment found
7 choose a literal L not assigned in α occurring in S // Case Splitting
8 if trailDPLL(S, α ∪ {{L = 1}}) then
9 return true // first branch

10 else if trailDPLL(S, α ∪ {{L = 0}}) then
11 return true // second branch
12 else return false

(S, α) is the clause set S
as “seen” under partial
assignment α

No explicit pure literal
elimination (too slow for the
benefit it provides)

trailDPLL() leads to efficient
iterative DPLL
implementation

23/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithmwith Trail

Properties
DPLL always terminates

Each recursion eliminates one variable

Worst case: binary tree search of depth |V |

DPLL is sound and complete
If clause set S is SAT, we eventually find a satisfying α

If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity: linear!
Systematic search avoids blowup of “unfocused” DP

24/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Properties
DPLL always terminates

Each recursion eliminates one variable

Worst case: binary tree search of depth |V |

DPLL is sound and complete
If clause set S is SAT,

we eventually find a satisfying α

If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity: linear!
Systematic search avoids blowup of “unfocused” DP

24/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Properties
DPLL always terminates

Each recursion eliminates one variable

Worst case: binary tree search of depth |V |

DPLL is sound and complete
If clause set S is SAT, we eventually find a satisfying α

If clause set S is UNSAT,

the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity: linear!
Systematic search avoids blowup of “unfocused” DP

24/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Properties
DPLL always terminates

Each recursion eliminates one variable

Worst case: binary tree search of depth |V |

DPLL is sound and complete
If clause set S is SAT, we eventually find a satisfying α

If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity:

linear!
Systematic search avoids blowup of “unfocused” DP

24/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Properties
DPLL always terminates

Each recursion eliminates one variable

Worst case: binary tree search of depth |V |

DPLL is sound and complete
If clause set S is SAT, we eventually find a satisfying α

If clause set S is UNSAT, the entire space of (partial) variable assignments is searched (but variable selection still matters!)

Space complexity: linear!
Systematic search avoids blowup of “unfocused” DP

24/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLLAlgorithm

Elementary Algorithms

Local Search
Examples: GSAT, WalkSAT
Terminology: breakcount, makecount, diffscore

Resolution
Soundness and Completeness
Saturation Algorithm (Exponential Complexity)

DP Algorithm
Systematized Resolution
Improved Average Time Complexity

DPLL Algorithm
Case Splitting and Unit Propagation
Linear Space Complexity

25/25 May 5, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

