Lecture 3 — Elementary SAT Solving Heuristics, Conflict-Driven Clause Learning

Markus Iser, Dominik Schreiber | May 12, 2025

Overview

Recap. Lecture 3: Elementary SAT Solving Algorithms

m Local Search

m Resolution

m DP Algorithm

m DPLL Algorithm

Overview

Recap. Lecture 3: Elementary SAT Solving Algorithms

m Local Search

m Resolution

m DP Algorithm

m DPLL Algorithm

Today’s Topics

m Elementary SAT Solving Heuristics

m Branching Order
m Branching Polarity
m Restart Strategies

m Conflict-Driven Clause Learning

DPLL Algorithm: Iterative Variant

Decision Heuristics:

m Branching Order:

Which variable to choose?

m Branching Polarity:

Which value to assign?

Algorithm: iterativeDPLL(CNF Formula F)

Data: Trail (Stack of Literals)

1 While not all variables assigned by Trail do

0 N o a &~ 0N

9

if unitPropagation(F, Trail) has CONFLICT then
L + last literal not tried both True and False
if no such L then return UNSAT

pop all literals after and including L from Tralil
push {L = 0} on Trall

else

L + pick an unassigned literal

push {L =1} on Trall

10 return SAT

Properties of Decision Heuristics

Desired properties

m Fast to compute

m Gives easy sub-problems

Properties of Decision Heuristics

Desired properties

m Fast to compute

m Gives easy sub-problems
m Satisfy many clauses

m Maximize unit propagation

Properties of Decision Heuristics

Desired properties

m Fast to compute

m Gives easy sub-problems
m Satisfy many clauses

m Maximize unit propagation

Types of heuristics

Properties of Decision Heuristics

Desired properties

m Fast to compute

m Gives easy sub-problems
m Satisfy many clauses

m Maximize unit propagation

Types of heuristics

m Static vs. Dynamic
m Static: Based on formula statistics

m Dynamic: Based on formula and current state

m Separate vs. Joint
m Separate: Choose variable and value independently

m Joint: Choose variable and value together

Decision Heuristics: Bohm’s Heuristic

m h;(x): number of clauses of size i containing literal x which are not yet satisfied
B Hi(x) := amax(hi(x), hi(X)) + 8 min(hj(x), hi(X)) (leta:=1 and g := 2, for example)

m Select literal x with the maximal vector (H;(x), Hz(x), ...) under lexicographic order

Properties of BoOhm’s Heuristic

Goal: satisfy or reduce size of many and preferably short clauses
m Separate polarity heuristic (note that H;(x) = Hi(x))
— select x if > . hi(x) > >, hi(X)

m depends on literal occurrence counts over the not yet satisfied clauses

m SAT Competition 1992 best heuristic for random instances

https://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf

Decision Heuristics: Mom’s Heuristic

m f*(x): how often x occurs in the smallest not yet satisfied clauses

m Select variable x with a maximum S(x) = (f*(x) + f*(x)) - 2 + f*(x) - f*(x) (let k := 10, for example)

Properties of Mom’s Heuristic

Goal: assign variables with high occurrence in short clauses

m Separate polarity heuristic

— for example, select x if f*(x) > f*(x)
m depends on literal occurrence counts over the not yet satisfied clauses

m Popular in the mid 90s (Find some variants in Freeman 1995, pages 391)

https://satlecture.github.io/kit2024/references/1995_Freeman_Thesis.ps

Decision Heuristics: Jeroslow-Wang Heuristic

m Choose the literal x with a maximum J(x) = >, .. .r27°

Properties of Jeroslow-Wang Heuristic

Goal: assign variables with high occurrence in short clauses

m Considers all clauses, but shorter clauses are more important

m Separate polarity heuristic
— for example, use conflict-seeking polarity heuristic

m Two-sided variant: choose variable x with maximum J(x) + J(X)
— one-sided version works better

m Much better experimental results than Bhm and MOMS

(R)DLCS and (R)DLIS Heuristics

m based on positive Cp(x) and negative occurences Cy(x) of variable x
m used in the famous SAT solver GRASP in 2000

Properties of (R)DLCS and (R)DLIS Heuristics

m Dynamic: Take the current partial assignment into account
m Combined: select x with maximal Cp(x) + Cn(x)
m Individual: select x with maximal max(Cp(x), Cn(X))

m Randomized: randomly select variable among the best

Recap

Decision Heuristics

m Bohm’s Heuristic

m Mom’s Heuristic

m Jeroslow-Wang Heuristic
m (R)DLCS and (R)DLIS Heuristics

Restart Strategies

Restarts Strategies: Motivation

Given n runs of randomized DPLL search, what is the average number of backtracks per run?

1.4
0
(1]
— 1.2
)
=
(&) 1.1
]
o 2500
) .
Y= c
© 2000 P\ @ o.sf
-3

. 2
) o8|
o 1500 F w
s | ol
C 1000

Ll
S ~ | °
o S0 0.5 F
£

D 1 0.4 L 1 1 1 1 L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 800 1000
runs # runs

Heavy-tailed distribution Standard distribution

https://doi.org/10.1023/A:1006314320276

Restarts Strategies: Motivation

Given n runs of randomized DPLL search, what is the average number of backtracks per run?

1.4
0
(1]
— 1.2
)
=
(&) 1.1
]
o 2500
) .
Y= c
© 2000 P\\ @ o.sf
-3

. 2
) o8|
o 1500 F w
s | ol
C 1000

Ll
S ~ | °
o S0 0.5 F
£

D 1 0.4 L 1 1 1 1 L L L L
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 800 1000
runs # runs

Heavy-tailed distribution Standard distribution

https://doi.org/10.1023/A:1006314320276

Restart Strategies

Clear the partial assignment and backtrack to the root of the search tree.

m Recover from bad branching decisions
m Solve more instances on average

m Might decrease performance on easy instances

When to Restart?

m After some number of conflicts / backtracks

m The intervals between restarts should increase to guarantee completeness

m Linear increase: too slow
m Exponential increase: ok, with small exponent

m MiniSat: k-th restart happens after 100 x 1.1% conflicts

Restart Strategies: Inner / Outer Pattern (MiniSat)

Algorithm: Inner / Outer

Data: int inner = 100, outer = 100

1 while tfrue do

2 | run DPLL() with conflict-limit inner
3 | restarts++

4 | if inner > outer then

5 outer *= 1.1

6 inner = 100

7 | else

8 inner *= 1.1

Inner / Outer Pattern (MiniSat)

Restart Strategies

Algorithm: Inner / Outer

Data: int inner = 100, outer = 100

run DPLL() with conflict-limit inner

c

Q

<

)

)

T O —

S ~ O :
o +Oﬂ1 ﬂ
© + Al * Il *
ST 2588 o

()
= wnm.mem
Dv Mm .mm nU - — Qv - —_—
= O w= o)
S

2
3
4
5
6
7
8

1200

1000

1 1
o o
(=] o
0 ©o

Je1sal [un S1o1jJuod #

400
200

400

350

300

250

200

150

100

50

Index of restart

Restart Strategies: Luby Sequence

Theorem

Consider a Las Vegas algorithm A (i.e., correct but with random run time) and a restart strategy S = (t;, &, .. .) (i.e., run

A for time t;, then for time &, etc.). Up to a constant factor, the Luby sequence is the best possible universal strategy to
minimize the expected run time until a run is successful.

k-1 if | =2k — 1

Luby = u- (t); with t =
y (I)IEN / {ti_2k1_|_1 if 2/(—1 < i < 2/(— 1

Example: 1,1,2,1,1,2.4,1.1,2,1,1,2,4.8, ...

https://doi.org/10.1016/0020-0190(93)90029-9

Restart Strategies: Luby Sequence

w
4]

Algorithm: Luby Sequence

Input: int |
1 for k =1to 32 do

2 | if i == (1 < k) — 1 then
return 1 < (k — 1)

w
o

25

20

4 for Kk =1to oo do
5 | if(1 < (k—1))<
' return Luby(i —

15

i< (1< k)—1then
(1< (k-1))+1)

10

C - #conflicts until restart

run DPLL() with conflict-limit 512- Luby(++restarts)

1 1 Il 1 1 Il
0 10 20 30 40 50 60 70

Index of restart

Restart Strategies: Luby Sequence

Luby Sequence: Reluctant Doubling

A more efficient implementation of the Luby sequence invented by Donald Knuth
Use the v, of the following pairs (up, v,):

(ur, vi) = (1, 1);
(Unt1y Vnet) = Un & -Up == vy 7 (Uptl, 1) : (un, 2Vy);

Example: (1,1),(2,1),(2,2),(3,1), (4,1), (4,2), (4,4),(5,1),. ..

Branching Polarity: Phase Saving

Observation: Frequent restarts decrease performance on some satisfiable instances

Phase Saving / Assignment Caching

|dea: Remember last assignment of each variable and use it first in branching

m First implemented in RSAT (2006)
m Result: Phase saving stabilizes positive effect of restarts

m Best results in combination with non-chronological backtracking (follows)

Example: A and B are satisfied,
searching in component C

http://reasoning.cs.ucla.edu/rsat/

Recap

Decision Heuristics

Restart Strategies

m Inner / Outer Pattern
m Luby Sequence / Reluctant Doubling

m Phase Saving / Assignment Caching

Next up

Clause Learning

DPLL: Chronological Backtracking

{{A7 B}7{87 C}v{ﬁAv ﬁX? Y}v 1/ \O\
(-A X, Z}, {-A X,~Z}, B [B=1]
[(~A,~Y, Z},{~A Y, ~Z}) (Formula) 1
. C [C=1]
ABCXY.Z (Trail) 1 \0\

{—-A Y, -2} (Conflicting Clause) X X \X
/Ty
’

[Y=1] [Z=1,Z=0]; ¢ ¢ s

l
[Z=1,Z=0];

N

DPLL: Chronological Backtracking

{{A7 B}7{87 C}v{ﬁAv ﬁX? Y}v 1/ \O\
(-A X, Z}, {-A X,~Z}, B [B=1]
[(~A,~Y, Z},{~A Y, ~Z}) (Formula) 1
. C [C=1]
A.B.C.-X.Z (Trail) 1 \0\

{-A X, ~Z} (Conflicting Clause) X « \ «
/N TN Y
4

[Y=1] [Z=1,Z=0]; ¢ ¢ s

J
[Z=1,Z=0];

N

DPLL: Chronological Backtracking

{{A7 B}7 {Bv 0}7 {ﬁAv ﬁX? Y}a
(-A X, Z),{-A X,-Z),
{=A, =Y. Z} {-A Y, ~Z}} (Formula)

Observation: Conflicting clauses {—-A, =Y, -2},
{—A, X,=Z} constrain only a fraction of the trail (B
and C irrelevant)

How to find out which assignments on the trail are
relevant for the actual conflict and immediately
backtrack to A?

y

X
1/ \0
[Y=1{ [; ,2=0];

J
[Z=1,Z=0];

[B=1]

Implication Graph

Definition: Implication Graph

Given a formula F, assignment trail T, and conflicting clause C,
the implication graphisa DAG G = (VU {4}, E) of

m vertices [¢;, dj] for each literal ¢; with decision level d; on the trail

m vertex s representing the conflicting assignment

Note: all literals of C have edges to 4

m edges ([¢;, d], [u, dj]) for each propagated literal u;; at decision level d

The sink is always the conflicting assignment, and the sources are the desicion literals involved in the conflict.

We can use this to determine the reasons for the conflict.

Example: Implication Graph

Implication graph for the conflicting state under the trail A,B,C, X, Y, Z.
The edge labels denote clauses, node labels indicate a variable assignment and its decision level.

m Consider inferring the clause A=1 {{A, B},
{—A,-X} by the following (B, C},
resolution steps: (7 oz 5) oy 3. (~A —X, Y}

2B — 7 9 9 Y

m Learning of {—A, =X} prevents N S {-A X, Z},
the solver choosing the same {-A, Y, Z},
partial assignment again. 3C = 5 .7 =1 y {-A X, -2},

// — = —
s Y1 (A Y, ~Z}}

P e e e e e e
(G2 N
N’ N’ N N N N S

Conflict Analysis: Implementation

Implement trail as stack of literals together with a pointer to the reason clause (null for decisions) and the decision level.
On each conflict, use the trail to trace back the implications to the conflict sources.

Example: Trail with conflicting clause {—A, =Y, -2}

Var. Lvl. Reason Trail Resolution:
7 4 {-A-Y, -2} m{-A-Y, Z}{-A Y, Z}={-A =Y}
s }:ﬁ: x ﬁ B (<A Y}y {-A X, Y}={-A X}
X 4 null m Conflict Clause C = {—-A, X}
C 3 null
B 2 null
A 1 null

Conflict Analysis: Unit Implication Points (UIP)

Several possibilities to learn a clause from an
implication graph exist.

Decision clause 1UIP clause
(pvgv—b) t

m UIP is a dominator in the implication graph
(restricted to variables assigned at the current
decision level)

m A node v is a dominator for 7, if all paths to
4contain v

m FirstUIP: “first” dominator (seen from conflict side) ~ \ N 3

rel - sat clause FirstNewCut clause
(—av-—ab) (x1 v x2vx3)

http://ijcai.org/Proceedings/03/Papers/171.pdf

Conflict Analysis: 1-UIP Learning

m FirstUIP Clause:

Resolve the conflicting clause and reason clauses until only a single literal of the current decision level remains.

m Advantage:

m Stopping at a UIP always leads to an asserting clause.
m A clause is asserting if all literals are false except one, which is unassigned.
m Algorithm becomes simpler: backtrack until clause becomes asserting.

m In 1-UIP learning, the backtrack level is always the second highest level in a conflict clause.

Non-chronological Backtracking

1-UIP learning changes the decision tree in our example like this:

/1 K F = {{A7 B}7{87 C}a
B [Y=0] [B=1] [-A,-X, Y},
1 {_'Av X, Z}7
C -A Y, Z
1 [X=0] {-A, Y, 2},
1 {_'A7 X, ﬁZ}a
X -A Y. -Z
=1, z-oy AT 2l
Vo1 Trail: A,B,C, X, Y,Z
[1_] Conflicting Clause: {—A, —~Y,~Z}
Conflict Clause (1UIP): {-A, —Y}

(Z=1, Z=0]/

Non-chronological Backtracking

1-UIP learning changes the decision tree in our example like this:

k//)//1 Iy F = {{A,B},{B,C),
B yv=q (BT [~A, =X, Y},
{—A X, Z},
C v A Y, 2},
1 [X=0] iﬁwaij;
X A —|A’—|Y’ —|Z
1 [Z=1s Z=O]é i—!A —|Y}} }
Y=
[1 1] Trail: A, ~Y,-X,Z
Conflicting Clause: {—-A X, -2}

[Z=1, Z=0]/

Clause Learning: Further Reading

https://doi.org/10.1007/978-3-030-51825-7_3
https://doi.org/10.1007/978-3-030-80223-3_12

Resolution Proof

Properties of conflict clause C
mFEC
mFU-Chlyp L

mvYDCC,D¢F

Certificates for Unsatisfiability

m sequence of learned clauses serves as a proof of unsatisfiability

m can be used to validate the correctness of the SAT result in high risk applications

The End.

m Decision Heuristics
m BO6hm’s Heuristic

m Mom'’s Heuristic
m Jeroslow-Wang Heuristic
m (R)DLCS and (R)DLIS Heuristics

m Restart Strategies
m Inner/ Quter Pattern

m Luby Sequence / Reluctant Doubling
m Branching Heuristic: Phase Saving

m Conflict Analysis, Clause Learning

