
Practical SAT Solving

Lecture 3 – Elementary SAT Solving Heuristics, Conflict-Driven Clause Learning
Markus Iser, Dominik Schreiber | May 12, 2025

Recap. Lecture 3: Elementary SAT Solving Algorithms

Local Search

Resolution

DP Algorithm

DPLL Algorithm

Today’s Topics
Elementary SAT Solving Heuristics

Branching Order
Branching Polarity
Restart Strategies

Conflict-Driven Clause Learning

2/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Overview

Recap. Lecture 3: Elementary SAT Solving Algorithms

Local Search

Resolution

DP Algorithm

DPLL Algorithm

Today’s Topics
Elementary SAT Solving Heuristics

Branching Order
Branching Polarity
Restart Strategies

Conflict-Driven Clause Learning

2/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Overview

Decision Heuristics:

Branching Order:

Which variable to choose?

Branching Polarity:

Which value to assign?

Algorithm: iterativeDPLL(CNF Formula F)
Data: Trail (Stack of Literals)

1 while not all variables assigned by Trail do
2 if unitPropagation(F, Trail) has CONFLICT then
3 L← last literal not tried both True and False
4 if no such L then return UNSAT
5 pop all literals after and including L from Trail
6 push {L = 0} on Trail
7 else
8 L← pick an unassigned literal
9 push {L = 1} on Trail

10 return SAT

3/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLL Algorithm: Iterative Variant

Desired properties

Fast to compute

Gives easy sub-problems

Satisfy many clauses

Maximize unit propagation

Types of heuristics

Static vs. Dynamic
Static: Based on formula statistics

Dynamic: Based on formula and current state

Separate vs. Joint
Separate: Choose variable and value independently

Joint: Choose variable and value together

4/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Properties of Decision Heuristics

Desired properties

Fast to compute

Gives easy sub-problems
Satisfy many clauses

Maximize unit propagation

Types of heuristics

Static vs. Dynamic
Static: Based on formula statistics

Dynamic: Based on formula and current state

Separate vs. Joint
Separate: Choose variable and value independently

Joint: Choose variable and value together

4/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Properties of Decision Heuristics

Desired properties

Fast to compute

Gives easy sub-problems
Satisfy many clauses

Maximize unit propagation

Types of heuristics

Static vs. Dynamic
Static: Based on formula statistics

Dynamic: Based on formula and current state

Separate vs. Joint
Separate: Choose variable and value independently

Joint: Choose variable and value together

4/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Properties of Decision Heuristics

Desired properties

Fast to compute

Gives easy sub-problems
Satisfy many clauses

Maximize unit propagation

Types of heuristics

Static vs. Dynamic
Static: Based on formula statistics

Dynamic: Based on formula and current state

Separate vs. Joint
Separate: Choose variable and value independently

Joint: Choose variable and value together

4/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Properties of Decision Heuristics

hi(x): number of clauses of size i containing literal x which are not yet satisfied

Hi(x) := αmax(hi(x),hi(x)) + βmin(hi(x),hi(x)) (let α := 1 and β := 2, for example)

Select literal x with the maximal vector (H1(x),H2(x), . . .) under lexicographic order

Properties of Böhm’s Heuristic

Goal: satisfy or reduce size of many and preferably short clauses

Separate polarity heuristic (note that Hi(x) = Hi(x))

→ select x if
∑

i hi(x) ≥
∑

i hi(x)

depends on literal occurrence counts over the not yet satisfied clauses

SAT Competition 1992: best heuristic for random instances

5/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Decision Heuristics: Böhm’s Heuristic

https://stamm-wilbrandt.de/en/Report_on_a_SAT_competition.pdf

f ∗(x): how often x occurs in the smallest not yet satisfied clauses

Select variable x with a maximum S(x) =
(
f ∗(x) + f ∗(x)

)
· 2k + f ∗(x) · f ∗(x) (let k := 10, for example)

Properties of Mom’s Heuristic

Goal: assign variables with high occurrence in short clauses

Separate polarity heuristic

→ for example, select x if f ∗(x) ≥ f ∗(x)

depends on literal occurrence counts over the not yet satisfied clauses

Popular in the mid 90s (Find some variants in Freeman 1995, pages 39f.)

6/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Decision Heuristics: Mom’s Heuristic
MaximumOccurrences in clauses ofMinimum Size

https://satlecture.github.io/kit2024/references/1995_Freeman_Thesis.ps

Choose the literal x with a maximum J(x) =
∑

x∈c, c∈F 2−|c|

Properties of Jeroslow-Wang Heuristic

Goal: assign variables with high occurrence in short clauses

Considers all clauses, but shorter clauses are more important

Separate polarity heuristic
→ for example, use conflict-seeking polarity heuristic

Two-sided variant: choose variable x with maximum J(x) + J(x)
→ one-sided version works better

Much better experimental results than Böhm and MOMS

7/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Decision Heuristics: Jeroslow-Wang Heuristic

based on positive CP(x) and negative occurences CN(x) of variable x

used in the famous SAT solver GRASP in 2000

Properties of (R)DLCS and (R)DLIS Heuristics

Dynamic: Take the current partial assignment into account

Combined: select x with maximal CP(x) + CN(x)

Individual: select x with maximal max(CP(x),CN(x))

Randomized: randomly select variable among the best

8/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

(R)DLCS and (R)DLIS Heuristics
(Randomized)Dynamic Largest (Combined | Individual) Sum

Decision Heuristics

Böhm’s Heuristic

Mom’s Heuristic

Jeroslow-Wang Heuristic

(R)DLCS and (R)DLIS Heuristics

Next up

Restart Strategies

9/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

Given n runs of randomized DPLL search, what is the average number of backtracks per run?

Heavy-tailed distribution Standard distribution

[Gomes et al. 2000]

10/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restarts Strategies: Motivation

https://doi.org/10.1023/A:1006314320276

Given n runs of randomized DPLL search, what is the average number of backtracks per run?

Heavy-tailed distribution Standard distribution

[Gomes et al. 2000]

10/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restarts Strategies: Motivation

https://doi.org/10.1023/A:1006314320276

Clear the partial assignment and backtrack to the root of the search tree.

Recover from bad branching decisions

Solve more instances on average

Might decrease performance on easy instances

When to Restart?

After some number of conflicts / backtracks

The intervals between restarts should increase to guarantee completeness

Linear increase: too slow

Exponential increase: ok, with small exponent

MiniSat: k -th restart happens after 100× 1.1k conflicts

11/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies

Algorithm: Inner / Outer
Data: int inner = 100, outer = 100

1 while true do
2 run DPLL() with conflict-limit inner
3 restarts++
4 if inner ≥ outer then
5 outer *= 1.1
6 inner = 100
7 else
8 inner *= 1.1

12/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies: Inner / Outer Pattern (MiniSat)

Algorithm: Inner / Outer
Data: int inner = 100, outer = 100

1 while true do
2 run DPLL() with conflict-limit inner
3 restarts++
4 if inner ≥ outer then
5 outer *= 1.1
6 inner = 100
7 else
8 inner *= 1.1

12/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies: Inner / Outer Pattern (MiniSat)

Theorem [Luby et al, 1993]

Consider a Las Vegas algorithm A (i.e., correct but with random run time) and a restart strategy S = ⟨t1, t2, . . .⟩ (i.e., run
A for time t1, then for time t2, etc.). Up to a constant factor, the Luby sequence is the best possible universal strategy to
minimize the expected run time until a run is successful.

Luby = u · (ti)i∈N with ti =

{
2k−1 if i = 2k − 1
ti−2k−1+1 if 2k−1 ≤ i ≤ 2k − 1

Example: 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, . . .

13/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies: Luby Sequence

https://doi.org/10.1016/0020-0190(93)90029-9

Algorithm: Luby Sequence
Input: int i

1 for k = 1 to 32 do
2 if i == (1≪ k)− 1 then
3 return 1≪ (k − 1)

4 for k = 1 to∞ do
5 if (1≪ (k − 1)) ≤ i ≤ (1≪ k)− 1 then
6 return Luby(i − (1≪ (k − 1)) + 1)

run DPLL() with conflict-limit 512· Luby(++restarts)

14/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies: Luby Sequence

Luby Sequence: Reluctant Doubling

A more efficient implementation of the Luby sequence invented by Donald Knuth

Use the vn of the following pairs (un, vn):

(u1, v1) = (1, 1);
(un+1, vn+1) = un & -un == vn ? (un+1, 1) : (un, 2vn);

Example: (1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .

15/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Restart Strategies: Luby Sequence

Observation: Frequent restarts decrease performance on some satisfiable instances

Phase Saving / Assignment Caching

Idea: Remember last assignment of each variable and use it first in branching

First implemented in RSAT (2006)

Result: Phase saving stabilizes positive effect of restarts

Best results in combination with non-chronological backtracking (follows)

A B

C F

Example: A and B are satisfied,
searching in component C

16/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Branching Polarity: Phase Saving

http://reasoning.cs.ucla.edu/rsat/

Decision Heuristics

Restart Strategies

Inner / Outer Pattern

Luby Sequence / Reluctant Doubling

Phase Saving / Assignment Caching

Next up

Clause Learning

17/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

{
{A,B}, {B,C}, {¬A,¬X ,Y},
{¬A,X ,Z}, {¬A,X ,¬Z},
{¬A,¬Y ,Z}, {¬A,¬Y ,¬Z}

}
(Formula)

A,B,C,X ,Y ,Z (Trail)

{¬A,¬Y ,¬Z} (Conflicting Clause)

A

B [B=1]

C

X

[Y=1]

[Z=1,Z=0]

[Z=1,Z=0]

1

1

1

1 0

0

[C=1]

X X

0

1

0

0

0

1

0

0

18/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLL: Chronological Backtracking

{
{A,B}, {B,C}, {¬A,¬X ,Y},
{¬A,X ,Z}, {¬A,X ,¬Z},
{¬A,¬Y ,Z}, {¬A,¬Y ,¬Z}

}
(Formula)

A,B,C,¬X ,Z (Trail)

{¬A,X ,¬Z} (Conflicting Clause)

A

B [B=1]

C

X

[Y=1]

[Z=1,Z=0]

[Z=1,Z=0]

1

1

1

1 0

0

[C=1]

X X

0

1

0

0

0

1

0

0

18/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLL: Chronological Backtracking

{
{A,B}, {B,C}, {¬A,¬X ,Y},
{¬A,X ,Z}, {¬A,X ,¬Z},
{¬A,¬Y ,Z}, {¬A,¬Y ,¬Z}

}
(Formula)

Observation: Conflicting clauses {¬A,¬Y ,¬Z},
{¬A,X ,¬Z} constrain only a fraction of the trail (B
and C irrelevant)

How to find out which assignments on the trail are
relevant for the actual conflict and immediately
backtrack to A?

A

B [B=1]

C

X

[Y=1]

[Z=1,Z=0]

[Z=1,Z=0]

1

1

1

1 0

0

18/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DPLL: Chronological Backtracking

Definition: Implication Graph

Given a formula F , assignment trail T , and conflicting clause C,
the implication graph is a DAG G = (V ∪ { },E) of

vertices [ℓi ,di] for each literal ℓi with decision level di on the trail

vertex representing the conflicting assignment

Note: all literals of C have edges to

edges
(
[ℓi ,di], [ui ,j ,di]

)
for each propagated literal ui ,j at decision level di

The sink is always the conflicting assignment, and the sources are the desicion literals involved in the conflict.

We can use this to determine the reasons for the conflict.

19/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Implication Graph

Implication graph for the conflicting state under the trail A,B,C,X ,Y ,Z .
The edge labels denote clauses, node labels indicate a variable assignment and its decision level.

Consider inferring the clause
{¬A,¬X} by the following
resolution steps: (7 ◦Z 5) ◦Y 3.

Learning of {¬A,¬X} prevents
the solver choosing the same
partial assignment again.

1A = 1

2B = 1

3C = 1

4X = 1
4Y = 1

4Z = 1

3
5

7

5
7

3 7

{{A,B}, (1)
{B,C}, (2)
{¬A,¬X ,Y}, (3)
{¬A,X ,Z}, (4)
{¬A,¬Y ,Z}, (5)
{¬A,X ,¬Z}, (6)
{¬A,¬Y ,¬Z}} (7)

20/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Example: Implication Graph

Implement trail as stack of literals together with a pointer to the reason clause (null for decisions) and the decision level.
On each conflict, use the trail to trace back the implications to the conflict sources.

Example: Trail with conflicting clause {¬A,¬Y ,¬Z}

Var. Lvl. Reason
 4 {¬A,¬Y ,¬Z}
Z 4 {¬A,¬Y ,Z}
Y 4 {¬A,¬X ,Y}
X 4 null
C 3 null
B 2 null
A 1 null

Trail Resolution:
{¬A,¬Y ,¬Z}⊗Z {¬A,¬Y ,Z}={¬A,¬Y}

{¬A,¬Y}⊗Y {¬A,¬X ,Y}={¬A,¬X}

Conflict Clause C = {¬A,¬X}

21/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict Analysis: Implementation

Several possibilities to learn a clause from an
implication graph exist.

UIP is a dominator in the implication graph
(restricted to variables assigned at the current
decision level)

A node v is a dominator for , if all paths to
 contain v

FirstUIP: “first” dominator (seen from conflict side)

[Beame et al, 2003]

22/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict Analysis: Unit Implication Points (UIP)

http://ijcai.org/Proceedings/03/Papers/171.pdf

FirstUIP Clause:

Resolve the conflicting clause and reason clauses until only a single literal of the current decision level remains.

Advantage:

Stopping at a UIP always leads to an asserting clause.

A clause is asserting if all literals are false except one, which is unassigned.

Algorithm becomes simpler: backtrack until clause becomes asserting.

In 1-UIP learning, the backtrack level is always the second highest level in a conflict clause.

23/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict Analysis: 1-UIP Learning

1-UIP learning changes the decision tree in our example like this:

A

B [B=1]

C

X

[Y=1]

[Z=1, Z=0]

[Y=0]

[X=0]

[Z=1, Z=0]

1

1

1

1

1

1 0 F = {{A,B}, {B,C},
{¬A,¬X ,Y},
{¬A,X ,Z},
{¬A,¬Y ,Z},
{¬A,X ,¬Z},
{¬A,¬Y ,¬Z}}

Trail: A,B,C,X ,Y ,Z
Conflicting Clause: {¬A,¬Y ,¬Z}
Conflict Clause (1UIP): {¬A,¬Y}

24/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Non-chronological Backtracking

1-UIP learning changes the decision tree in our example like this:

A

B [B=1]

C

X

[Y=1]

[Z=1, Z=0]

[Y=0]

[X=0]

[Z=1, Z=0]

1

1

1

1

1

1 0 F = {{A,B}, {B,C},
{¬A,¬X ,Y},
{¬A,X ,Z},
{¬A,¬Y ,Z},
{¬A,X ,¬Z},
{¬A,¬Y ,¬Z}
{¬A,¬Y}}

Trail: A,¬Y ,¬X ,Z
Conflicting Clause: {¬A,X ,¬Z}

24/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Non-chronological Backtracking

Clause Size Reduction with all-UIP Learning (Feng and Bacchus, 2020)

Efficient All-UIP Learned Clause Minimization (Fleury and Biere, 2021)

25/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Learning: Further Reading

https://doi.org/10.1007/978-3-030-51825-7_3
https://doi.org/10.1007/978-3-030-80223-3_12

Properties of conflict clause C

F |= C

F ∪ ¬C ⊢UP ⊥

∀D ⊆ C,D /∈ F

Certificates for Unsatisfiability

sequence of learned clauses serves as a proof of unsatisfiability

can be used to validate the correctness of the SAT result in high risk applications

26/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution Proof

Recap
Decision Heuristics

Böhm’s Heuristic

Mom’s Heuristic

Jeroslow-Wang Heuristic

(R)DLCS and (R)DLIS Heuristics

Restart Strategies
Inner / Outer Pattern

Luby Sequence / Reluctant Doubling

Branching Heuristic: Phase Saving

Conflict Analysis, Clause Learning

27/27 May 12, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

The End.

