
Practical SAT Solving

Lecture 5 – Conflict-Driven Clause Learning
Markus Iser, Dominik Schreiber | May 19, 2025



Recap.

Lecture 4: Classic Heuristics and Modern SAT Solving 1:
Decision Heuristics, Restart Strategies, Phase Saving

Modern SAT Solving 1: Conflict Analysis / Clause Learning

Today’s Topic: Modern SAT Solving 2

Efficient Unit Propagation

Clause Forgetting

Modern Decision Heuristics

2/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Overview



Last Time
Classic Decision Heuristics
Restart Strategies
Clause Learning
Non-Chronological
Backtracking

Today
Efficient Unit Propagation
Clause Forgetting
Modern Decision Heuristics

Algorithm 1: CDCL(CNF Formula F , &Assignment A← ∅)
1 if not PREPROCESSING then return UNSAT
2 while A is not complete do
3 UNIT PROPAGATION
4 if A falsifies a clause in F then
5 if decision level is 0 then return UNSAT
6 else
7 (clause, level)← CONFLICT-ANALYSIS
8 add clause to F and backtrack to level
9 continue

10 if RESTART then backtrack to level 0
11 if CLEANUP then forget some learned clauses
12 BRANCHING
13 return SAT

3/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict-driven Clause Learning (CDCL) Algorithm



Hot Paths in CDCL Solvers

heat ∅ per sec.1

Clause Access Unpredictable memory access: most expensive

Iterate Occurrences Predictable memory access: array of pointers (hardware prefetching)

Propagation ∼ 106 Access occurrence-list of yet unpropagated literal

Decision ∼ 103

Conflict ∼ 103 Learn a clause→ more to check for propagation

Restart ∼ 10−1

Cleanup Forget some learned clauses→ less to check for propagation

1Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

4/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Full Occurrence Lists

Trail

level value reason

1 a ⊥

Occurrence Lists

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c ∗3 ∗1

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

5/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Full Occurrence Lists

Trail

level value reason

1 a ⊥

Occurrence Lists

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c ∗3 ∗1

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

5/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Full Occurrence Lists

Trail

level value reason

1 a ⊥

2 c ⊥

Occurrence Lists

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c ∗3 ∗1

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

5/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Full Occurrence Lists

Trail

level value reason

1 a ⊥

2 c ⊥

Occurrence Lists

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c ∗3 ∗1

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

5/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Full Occurrence Lists

Trail

level value reason

1 a ⊥

2 c ⊥

2 b ∗2

Occurrence Lists

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c ∗3 ∗1

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

5/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Motivation: Hot Path

heat ∅ per sec.2 Idea: Reduced occurrence tracking by only keeping the following invariant:

Each yet unsatisfied clause is watched by, i.e., in the occurrence list of,
two of its unassigned literals.

Reasoning: less literals watched→ shorter occurrence lists→ less clause
accesses→ fast unit propagation

Why do two watched literals per clause suffice?
Why does one watched literal per clause not suffice?
How do we keep that invariant? (Branching?, Backtracking?)

Clause Access

Iterate Occurrences

Propagation ∼ 106

2Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

6/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation: Two Watched Literals



Motivation: Hot Path

heat ∅ per sec.2 Idea: Reduced occurrence tracking by only keeping the following invariant:

Each yet unsatisfied clause is watched by, i.e., in the occurrence list of,
two of its unassigned literals.

Reasoning: less literals watched→ shorter occurrence lists→ less clause
accesses→ fast unit propagation

Why do two watched literals per clause suffice?

Why does one watched literal per clause not suffice?
How do we keep that invariant? (Branching?, Backtracking?)

Clause Access

Iterate Occurrences

Propagation ∼ 106

2Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

6/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation: Two Watched Literals



Motivation: Hot Path

heat ∅ per sec.2 Idea: Reduced occurrence tracking by only keeping the following invariant:

Each yet unsatisfied clause is watched by, i.e., in the occurrence list of,
two of its unassigned literals.

Reasoning: less literals watched→ shorter occurrence lists→ less clause
accesses→ fast unit propagation

Why do two watched literals per clause suffice?
Why does one watched literal per clause not suffice?

How do we keep that invariant? (Branching?, Backtracking?)

Clause Access

Iterate Occurrences

Propagation ∼ 106

2Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

6/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation: Two Watched Literals



Motivation: Hot Path

heat ∅ per sec.2 Idea: Reduced occurrence tracking by only keeping the following invariant:

Each yet unsatisfied clause is watched by, i.e., in the occurrence list of,
two of its unassigned literals.

Reasoning: less literals watched→ shorter occurrence lists→ less clause
accesses→ fast unit propagation

Why do two watched literals per clause suffice?
Why does one watched literal per clause not suffice?
How do we keep that invariant? (Branching?, Backtracking?)

Clause Access

Iterate Occurrences

Propagation ∼ 106

2Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

6/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation: Two Watched Literals



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

Two Watched Literals

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c

¬c

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

1 a ⊥

Two Watched Literals

idx. occurrences

a ∗1

¬a ∗2 ∗3

b ∗1 ∗2

¬b ∗3

c

¬c

Formula

addr. clause
∗1 a b c

∗2 ¬a b ¬c

∗3 ¬a ¬b c

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

1 a ⊥

Two Watched Literals

idx. occurrences

a ∗1

¬a ∗3

b ∗1 ∗2

¬b ∗3

c

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬c b ¬a

∗3 ¬a ¬b c

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

1 a ⊥

Two Watched Literals

idx. occurrences

a ∗1

¬a

b ∗1 ∗2

¬b ∗3

c ∗3

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬c b ¬a

∗3 c ¬b ¬a

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

1 a ⊥

2 c ⊥

Two Watched Literals

idx. occurrences

a ∗1

¬a

b ∗1 ∗2

¬b ∗3

c ∗3

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬c b ¬a

∗3 c ¬b ¬a

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Example: Unit Propagation with Two Watched Literals

Trail

level value reason

1 a ⊥

2 c ⊥

2 b ∗2

Two Watched Literals

idx. occurrences

a ∗1

¬a

b ∗1 ∗2

¬b ∗3

c ∗3

¬c ∗2

Formula

addr. clause
∗1 a b c

∗2 ¬c b ¬a

∗3 c ¬b ¬a

7/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation



Two Watched Literals: Optimizations

heat ∅ per sec.3 Invariant: Each yet unsatisfied clause is watched by two of its unassigned
literals.

→ Reduced Load in Occurrence Tracking

Optimization 1: Keep watched literals the first two in clause
→ Alternative: Store watched literals in other location
Note: What happens if clauses are kept in shared memory for parallel solving?

Optimization 2: Also keep a literal of each clause directly in occurrence list
→ Skip clause access if that literal is satisfied

Clause Access

Iterate Occurrences

Propagation ∼ 106

3Order of magnitude of average event count per second (in runs of Cadical on a large combined benchmark set)

8/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Unit Propagation: Two Watched Literals



Unit Propagation

Hottest path in CDCL solvers

Two watched literals per clause suffice (for unit propagation and conflict detection)

Further optimizations:

Invariant: the two first literals in each clause are the watched ones

Blocking literals: keep a literal of each clause directly in occurrence list

Next Up

Clause Forgetting

9/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap



Motivation
Clause learning is most important pruning strategy in CDCL solvers.4

Problem:
Slows down unit propagation

Risk of running out of memory

Solution:
Periodically forget some learned clauses

Keep only “the best” learned clauses

How to figure out which learned clauses are “the best”?

4“Empirical Study of the Anatomy of Modern SAT Solvers”, Katebi et al., 2013

10/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting

https://doi.org/10.1007/978-3-642-21581-0_27


Motivation
Clause learning is most important pruning strategy in CDCL solvers.4

Problem:
Slows down unit propagation

Risk of running out of memory

Solution:
Periodically forget some learned clauses

Keep only “the best” learned clauses

How to figure out which learned clauses are “the best”?

4“Empirical Study of the Anatomy of Modern SAT Solvers”, Katebi et al., 2013

10/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting

https://doi.org/10.1007/978-3-642-21581-0_27


Periodic Clause Forgetting: Heuristics

Clause Size

Keep short clauses

Least Recently Used (LRU)

Keep clauses which where reasons in recent conflicts: clause activity (EMA)

Literal Block Distance (LBD)

Keep clauses with a low number of decision levelsPredicting Learnt Clauses Quality in Modern SAT Solvers,
Audemard & Simon (IJCAI 2009)

11/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting

https://www.ijcai.org/Proceedings/09/Papers/074.pdf
https://www.ijcai.org/Proceedings/09/Papers/074.pdf


Periodic Clause Forgetting: Heuristics

Clause Size

Keep short clauses

Least Recently Used (LRU)

Keep clauses which where reasons in recent conflicts: clause activity (EMA)

Literal Block Distance (LBD)

Keep clauses with a low number of decision levels5

5Predicting Learnt Clauses Quality in Modern SAT Solvers, Audemard & Simon (IJCAI 2009)

11/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting

https://www.ijcai.org/Proceedings/09/Papers/074.pdf


Periodic Clause Forgetting: Heuristics

Clause Size

Keep short clauses

Least Recently Used (LRU)

Keep clauses which where reasons in recent conflicts: clause activity (EMA)

Literal Block Distance (LBD)

Keep clauses with a low number of decision levels5

Why is low LBD good?

5Predicting Learnt Clauses Quality in Modern SAT Solvers, Audemard & Simon (IJCAI 2009)

11/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting

https://www.ijcai.org/Proceedings/09/Papers/074.pdf


“Impact of Community Structure on SAT Solver Performance”, Newsham et al., SAT 2014

Take home: LBD correlates with number of touched communities

Image Source: “Community Structure in Industrial SAT Instances”, Ansotegui et al., AIJ 2019

12/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Forgetting Heuristic: Literal Block Distance (LBD)

http://www.cril.univ-artois.fr/articles/communities.pdf
https://arxiv.org/pdf/1606.03329


Manage clauses differently in three tiers
Tier Strategy Description
core LBD Permanently store clauses of LBD ≤ k (core-cut value, 3 in practice)

mid-tier LRU Clauses stay here if used in recent conflicts

local LRU Keep fixed number of clauses (say 5000) of highest activity

History

core and local tier introduced in SWDiA5BY (Chanseok Oh, 2014)

mid-tier introduced in CoMinisatPS (Chanseok Oh, 2015)

“Between SAT and UNSAT: The Fundamental Difference in CDCL SAT” (Chanseok Oh, 2015)

Note: The award-winning SAT solver MapleCOMSPS (2016) is a CoMinisatPS fork

13/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Forgetting: Modern Hybrid Approach

https://link.springer.com/chapter/10.1007/978-3-319-24318-4_23


14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
initial layout, recently active variables after 1000 conflicts



14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
initial layout, recently active variables after 1690 conflicts



14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
initial layout, recently active variables after 3090 conflicts



14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
initial layout, recently active variables after 5000 conflicts



14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
relayout after 6000 conflicts



14/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from Termination Analysis, SAT
core after 52500 conflicts



15/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from SV Competition, SAT
initial layout



15/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from SV Competition, SAT
after 10000 conflicts



15/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from SV Competition, SAT
after 1000000 conflicts



15/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from SV Competition, SAT
after 3000000 conflicts



15/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Instance from SV Competition, SAT
core, after 3500000 conflicts, almost solved



So far

Efficient Unit Propagation

Clause Forgetting Heuristics

Next Up

Modern Decision Heuristics

16/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap



VSIDS Heuristic
Implemented in most CDCL solvers. First presented in SAT solver Chaff.6

Always select variable with highest score for branching. Scores are updated after each conflict.

Initialize variable score (with zero or use some static heuristic)

New conflict clause c: score is incremented for all variables in c

Periodically, divide all scores by a constant

6Chaff: Engineering an efficient SAT solver (Moskewicz et al., 2001)

17/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Variable State Independent Decaying Sum (VSIDS)

https://doi.org/10.1145/378239.379017


Example: Score Update after Conflict

Formula:

{x1, x4}, {x1, x3, x8}, {x1, x8, x12}, {x2, x11},
{x7, x3, x9}, {x7, x8, x9}, {x7, x8, x10}
{x7, x10, x12} (new learned clause)

Scores before:

4 : x8

3 : x1, x7

2 : x3

1 : x2, x4, x9, x10, x11, x12

Scores after:

4 : x8, x7

3 : x1

2 : x3, x10, x12

1 : x2, x4, x9, x11

VSIDS leads to more “focused” search

prefers variables that occurred in recent conflicts

tends to find smaller unsatisfiable subsets

18/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Variable State Independent Decaying Sum (VSIDS)



Example: Score Update after Conflict

Formula:

{x1, x4}, {x1, x3, x8}, {x1, x8, x12}, {x2, x11},
{x7, x3, x9}, {x7, x8, x9}, {x7, x8, x10}
{x7, x10, x12} (new learned clause)

Scores before:

4 : x8

3 : x1, x7

2 : x3

1 : x2, x4, x9, x10, x11, x12

Scores after:

4 : x8, x7

3 : x1

2 : x3, x10, x12

1 : x2, x4, x9, x11

VSIDS leads to more “focused” search

prefers variables that occurred in recent conflicts

tends to find smaller unsatisfiable subsets

18/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Variable State Independent Decaying Sum (VSIDS)



Common implementation: Binary Heap

Heap Operation Complexity Callee

insert_with_priority O(log n) Backtracking

pull_highest_priority_element O(log n) Branching

increase_key / bump_variable O(log n) Conflict Analysis

decay O(n) [Periodic]7

7Periodically divide scores to give priority to recently learned clauses

19/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Variable State Independent Decaying Sum (VSIDS)



Historic Implementations
Chaff (2001)

decay: half scores every 256 conflicts
sort priority queue after each decay only

Berkmin (2002)
bump all literals in implication graph
divide scores by 4

Minisat (2003): Exponential VSIDS (EVSIDS)

Idea: Exponential decay of scores s(v) with damping factor 0 < f < 1

s′(v) :=

{
f · s(v) + (1− f ) if v is to be bumped
f · s(v) otherwise

Theory: Exponential Moving Average (EMA)

Implementation: Score increment by g i , with i denoting the conflict-index and g = 1
f (no decay)

Reason-side Bumping: Also bump variables in the reason clauses of the conflict

20/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Variable State Independent Decaying Sum (VSIDS)



Evaluating CDCL Variable Scoring Schemes (Biere & Fröhlich, 2015)

21/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

https://doi.org/10.1007/978-3-319-24318-4_29


Alternatives
Siege (2004): Variable Move To Front (VMTF)

HaifaSAT (2008): Clause Move To Front (CMTF)

Recent Hybrid Approaches
Warmup Phase:

MapleCOMSPS (2016): use Learning Rate-based Branching (LRB) in initial period, then switch to VSIDS

Maple_LCM_Dist (2017): use Distance Heuristic (Dist.) in initial period, then switch to VSIDS

Reinforcement Learning: Kissat_MAB (2021)
Two-armed Bandid switches between VSIDS and Conflict History-Based (CHB) Heuristic

Reward function favors variables that contribute to learning “good” clauses

22/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Alternative and Hybrid Approaches



Better Decision Heuristics in CDCL through Local Search and Target Phases (Cai et al., 2022)

Branching:
Target Phases: cache and use the phases which led to the previously largest assignment

Integrate Sprints of Local Search: use unit-propagation to complete the assignment (ignoring all conflicts)

Rephasing: save the best assignment found during local search for phase selection (diversification)

Ordering:
Import Statistics: use frequency of appearing in unsatisfied clauses to modify the variables VSIDS score

23/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Modern Branching: Local Search Intergration

https://doi.org/10.1613/jair.1.13666 


Recap
Efficient Unit Propagation
Clause Forgetting
Modern Decision Heuristics

Next Time
Preprocessing

Algorithm 2: CDCL(CNF Formula F , &Assignment A← ∅)
1 if not PREPROCESSING then return UNSAT
2 while A is not complete do
3 UNIT PROPAGATION
4 if A falsifies a clause in F then
5 if decision level is 0 then return UNSAT
6 else
7 (clause, level)← CONFLICT-ANALYSIS
8 add clause to F and backtrack to level
9 continue

10 if RESTART then backtrack to level 0
11 if CLEANUP then forget some learned clauses
12 BRANCHING
13 return SAT

24/24 May 19, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap


