
Practical SAT Solving

Lecture 6 – Preprocessing
Markus Iser, Dominik Schreiber | May 26, 2025

Recap: Last Time
Efficient Unit Propagation
Clause Forgetting
Modern Decision Heuristics

Today
Preprocessing

Algorithm 1: CDCL(CNF Formula F , &Assignment A← ∅)
1 if not PREPROCESSING then return UNSAT

2 while A is not complete do
3 UNIT PROPAGATION
4 if A falsifies a clause in F then
5 if decision level is 0 then return UNSAT
6 else
7 (clause, level)← CONFLICT-ANALYSIS
8 add clause to F and backtrack to level
9 continue

10 if RESTART then backtrack to level 0
11 if CLEANUP then forget some learned clauses
12 BRANCHING
13 return SAT

2/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict-driven Clause Learning (CDCL)

Recap: Last Time
Efficient Unit Propagation
Clause Forgetting
Modern Decision Heuristics

Today
Preprocessing

Algorithm 2: CDCL(CNF Formula F , &Assignment A← ∅)
1 if not PREPROCESSING then return UNSAT

2 while A is not complete do
3 UNIT PROPAGATION
4 if A falsifies a clause in F then
5 if decision level is 0 then return UNSAT
6 else
7 (clause, level)← CONFLICT-ANALYSIS
8 add clause to F and backtrack to level
9 continue

10 if RESTART then backtrack to level 0
11 if CLEANUP then forget some learned clauses
12 BRANCHING
13 return SAT

2/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict-driven Clause Learning (CDCL)

Preprocessing takes place between problem encoding and its solution.

Preprocessing is . . .

a form of reencoding a problem
a form of reasoning itself

Classic Preprocessing Techniques

Conjecture: Smaller problems are easier to solve =⇒ Try to reduce the size of the formula.

Subsumption

Self-subsuming Resolution

(Bounded) Variable Elimination (BVE)

3/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Preprocessing

A clause C is subsumed by D iff D ⊆ C.

Subsumed clauses can be removed from the formula without changing satisfiability: ∀D ⊆ C,D |= C

Example

{a,b} subsumes {a,b, c} and {a,b,d}

Implementation 1: Forward Subsumption

Select clause C and check if it is subsumed by any other clause D ⊆ C.

Optimization 1: Use one-watched literal data-structure

Optimization 2: Watch literals with the fewest occurrences

Optimization 3: Keep literals sorted and perform merge-sort style subset check

4/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

A clause C is subsumed by D iff D ⊆ C.

Subsumed clauses can be removed from the formula without changing satisfiability: ∀D ⊆ C,D |= C

Example

{a,b} subsumes {a,b, c} and {a,b,d}

Implementation 1: Forward Subsumption

Select clause C and check if it is subsumed by any other clause D ⊆ C.

How to check if there exists a clause D that subsumes C?

Optimization 1: Use one-watched literal data-structure

Optimization 2: Watch literals with the fewest occurrences

Optimization 3: Keep literals sorted and perform merge-sort style subset check

4/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

A clause C is subsumed by D iff D ⊆ C.

Subsumed clauses can be removed from the formula without changing satisfiability: ∀D ⊆ C,D |= C

Example

{a,b} subsumes {a,b, c} and {a,b,d}

Implementation 1: Forward Subsumption

Select clause C and check if it is subsumed by any other clause D ⊆ C.

Temporarily mark all literals in C as unsatifisfied and propagate() to find subsuming clauses.

Optimization 1: Use one-watched literal data-structure

Optimization 2: Watch literals with the fewest occurrences

Optimization 3: Keep literals sorted and perform merge-sort style subset check

4/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

Implementation 2: Backward Subsumption

Select clause D and check if it subsumes any other clause C ⊇ D.

Learned clauses can subsume other clauses.

Algorithm 3: Signature-based Subsumption
// Initialization:

1 for clause ∈ formula do
2 clause.signature = 0
3 for lit ∈ ∗clause do
4 clause.signature |= 1ull <<

(
id(lit)%64

)
// Subsumption Check:

5 if D.signature & invert(C.signature) == 0 then
// Check if D subsumes C

5/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

Implementation 2: Backward Subsumption

Select clause D and check if it subsumes any other clause C ⊇ D.

Learned clauses can subsume other clauses.
How about the other way around?

Algorithm 4: Signature-based Subsumption
// Initialization:

1 for clause ∈ formula do
2 clause.signature = 0
3 for lit ∈ ∗clause do
4 clause.signature |= 1ull <<

(
id(lit)%64

)
// Subsumption Check:

5 if D.signature & invert(C.signature) == 0 then
// Check if D subsumes C

5/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

Implementation 2: Backward Subsumption

Select clause D and check if it subsumes any other clause C ⊇ D.

Learned clauses can subsume other clauses.

Optimization 1: Only check the clauses of the variable with
the fewest occurrences (scales to large formulas, might miss
some subsumptions)

Optimization 2: Use signatures to skip the majority of
subsumption checks (cf. Bloom filters)

Algorithm 5: Signature-based Subsumption
// Initialization:

1 for clause ∈ formula do
2 clause.signature = 0
3 for lit ∈ ∗clause do
4 clause.signature |= 1ull <<

(
id(lit)%64

)
// Subsumption Check:

5 if D.signature & invert(C.signature) == 0 then
// Check if D subsumes C

5/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Subsumption

Applicable if the resolvent of C and another clause D subsumes C.

If C ⊗x D ⊆ C then C can be replaced by C ⊗x D.

Example

Let ⊗f be the resolution operator on variable f .

C := {¬b,¬e, f ,¬h} D := {¬b,¬e,¬f} E := C ⊗f D = {¬b,¬e,¬h}

−→ Replace C by E (“clause strengthening”)

Implementation

Integrate with subsumption: Allow at most one literal of D to occur negated in C

Variant: On-the-fly subsumption/strengthening of reason clauses during conflict analysis

6/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Self-Subsuming Resolution

Applicable if the resolvent of C and another clause D subsumes C.

If C ⊗x D ⊆ C then C can be replaced by C ⊗x D.

Example

Let ⊗f be the resolution operator on variable f .

C := {¬b,¬e, f ,¬h} D := {¬b,¬e,¬f} E := C ⊗f D = {¬b,¬e,¬h}

−→ Replace C by E (“clause strengthening”)

Implementation

Integrate with subsumption: Allow at most one literal of D to occur negated in C

Variant: On-the-fly subsumption/strengthening of reason clauses during conflict analysis

6/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Self-Subsuming Resolution

Let Sx ,Sx ⊆ F be the sets of all clauses containing x resp. x ,
and let R = {C ⊗x D | C ∈ Sx ,D ∈ Sx} be the set of all resolvents on x .

The formulas F and F ′ := (F \ (Sx ∪ Sx)) ∪ R are equisatisfiable but not equivalent.

Bounded Variable Elimination (BVE)

Eliminate variable only if the formula size does not increase (too much).

Note 1: Variables of removed clauses can be rescheduled for further elimination attempts

Note 2: Resolvent can trigger further subsumptions and vice versa

Variant: Incrementally Relaxed BVE: Increase bound each round if formula size did not increase too much

Optimizations: Perform check only for bounded clause size, resolvent size, or variable occurrence count

BVE is particularly effective in presence of functional definitions (cf. Tseitin encoding)

7/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Bounded Variable Elimination (BVE)

Let Sx ,Sx ⊆ F be the sets of all clauses containing x resp. x ,
and let R = {C ⊗x D | C ∈ Sx ,D ∈ Sx} be the set of all resolvents on x .

The formulas F and F ′ := (F \ (Sx ∪ Sx)) ∪ R are equisatisfiable but not equivalent.

Bounded Variable Elimination (BVE)

Eliminate variable only if the formula size does not increase (too much).

Note 1: Variables of removed clauses can be rescheduled for further elimination attempts

Note 2: Resolvent can trigger further subsumptions and vice versa

Variant: Incrementally Relaxed BVE: Increase bound each round if formula size did not increase too much

Optimizations: Perform check only for bounded clause size, resolvent size, or variable occurrence count

BVE is particularly effective in presence of functional definitions (cf. Tseitin encoding)

7/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Bounded Variable Elimination (BVE)

A clause {x} ∪ C is blocked in F by x if either x is pure in F or
for every clause {¬x} ∪ D in F the resolvent C ∪ D is a tautology.

→ Dead ends in the resolution graph: no proof beyond this point.

Blocked clause elimination (BCE) has a unique fixpoint, and preserves satisfiability.

Example

F := (a ∨ b) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ c)

First clause is not blocked, second is blocked by both a and ¬c, third is blocked by c.

Effectiveness of BVE can be increased by interleaving it with BCE

Together with BVE: relationship with circuit-level simplification techniques

Generalization: Covered Clauses
A clause C is covered if it can be turned into a blocked clause by adding a covered literal.
A literal x is covered in C, if C contains a literal y such that all non-tautological resolvents of C on y contain x .

8/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Blocked Clause Elimination (BCE)

https://doi.org/10.1007/s10817-011-9239-9

A clause {x} ∪ C is blocked in F by x if either x is pure in F or
for every clause {¬x} ∪ D in F the resolvent C ∪ D is a tautology.

→ Dead ends in the resolution graph: no proof beyond this point.

Blocked clause elimination (BCE) has a unique fixpoint, and preserves satisfiability.

Example

F := (a ∨ b) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ c)

First clause is not blocked, second is blocked by both a and ¬c, third is blocked by c.

Effectiveness of BVE can be increased by interleaving it with BCE

Together with BVE: relationship with circuit-level simplification techniques

Generalization: Covered Clauses
A clause C is covered if it can be turned into a blocked clause by adding a covered literal.
A literal x is covered in C, if C contains a literal y such that all non-tautological resolvents of C on y contain x .

8/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Blocked Clause Elimination (BCE)

https://doi.org/10.1007/s10817-011-9239-9

A clause {x} ∪ C is blocked in F by x if either x is pure in F or
for every clause {¬x} ∪ D in F the resolvent C ∪ D is a tautology.

→ Dead ends in the resolution graph: no proof beyond this point.

Blocked clause elimination (BCE) has a unique fixpoint, and preserves satisfiability.

Example

F := (a ∨ b) ∧ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ c)

First clause is not blocked, second is blocked by both a and ¬c, third is blocked by c.

Effectiveness of BVE can be increased by interleaving it with BCE

Together with BVE: relationship with circuit-level simplification techniques

Generalization: Covered Clauses
A clause C is covered if it can be turned into a blocked clause by adding a covered literal.
A literal x is covered in C, if C contains a literal y such that all non-tautological resolvents of C on y contain x .

8/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Blocked Clause Elimination (BCE)

https://doi.org/10.1007/s10817-011-9239-9

Many preprocessing techniques remove clauses or variables from a formula in a mere satisfiability-preserving way, such
that the solution to the preprocessed formula needs some processing in order to be a solution to the original formula.

Reconstruction Algorithm

Keep track of eliminated variables (BVE) and
clauses (BCE) in a solution reconstruction stack
S, and if a model is found, use it to reconstruct a
solution to the original formula.

The order is important, such that the last
literal-clause pair (l ,C) in S needs to be the first
to be processed.

Algorithm 6: Solution Reconstruction
Data: Assignment A, Stack S

1 while S is not empty do
2 remove the last literal-clause pair (l ,C) from S;
3 if C is not satisfied by A then
4 A := (A \ {l = 0}) ∪ {l = 1}

5 If variables remain unassigned in A, then assign them an
arbitrary value.

9/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Solution Reconstruction

Classic Techniques

Subsumption and Self-subsuming Resolution

Bounded Variable Elimination

Blocked Clause Elimination

Solution Reconstruction

Next Up

Relationship between preprocessing techniques and gate encodings

10/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.

Tseitin encoding E of a gate with output o, function g, and input literals x1, . . . , xn:

E ≡ o ↔ g(x1, . . . , xn)

Properties of Gate Encodings

Let a Tseitin encoding E ≡ o ↔ g(x1, . . . , xn) be given, and let A(X) := {T ∪ {x | x ∈ X \ T} | T ∈ 2X}
denote the set of all assignments to variables in X := {x1, . . . , xn}.

For each input assignment I ∈ A({x1, . . . , xn}),

1. there exists at least one output assignment O ∈ {o,o} such that I ∪O |= E (left-totality)

2. there exists at most one output assignment O ∈ {o,o} such that I ∪O |= E (right-uniqueness)

→ The output is uniquely determined by the input, such that either I,o |= E and I,o ̸|= E or vice versa.

11/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Relationship with Gate Encodings

From the left-totality it follows that a Tseitin encoding E is a satisfiable set of blocked clauses.

Left-Totality of Gate Encodings

Let a Tseitin encoding E ≡ o ↔ g(x1, . . . , xn) be given, it holds that

1. for each clause C ∈ E , either o ∈ C or o ∈ C

Proof: The existence of a clause C ∈ E such that o ̸∈ vars(C) would contradict left-totality, because the assignment
falsifiying C, falsifies E for any assignment to o.

2. and all resolvents R ∈ Eo ⊗o Eo are tautological.

Proof: The existence of a non-tautological resolvent R ∈ Eo ⊗o Eo would contradict left-totality, because E |= R and
o ̸∈ vars(R), such that the assignment falsifying R, falsifies E for any assignment to o.

12/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Relationship with Gate Encodings

From the left-totality it follows that a Tseitin encoding E is a satisfiable set of blocked clauses.

Example (Tseitin encoding E ≡ o ↔ x ∧ y)

Let a Tseitin encoding E :=
{
{¬o, x}, {¬o, y}, {o,¬x ,¬y}

}
≡ o ↔ x ∧ y be given, it holds that

1. all resolvents in Eo ⊗o Eo =
{
{x ,¬x ,¬y}, {y ,¬x ,¬y}

}
≡ ⊤ are tautological,

2. and Blocked Clause Elimination (BCE) would remove all clauses from E .

Questions:

What does BCE do to F =
{
{o}

}
∪ E?

What does BCE do to F =
{
{¬o}

}
∪ E?

What does BCE do to F =
{
{q}, {¬q,o,p}, {¬q,¬o,¬p}

}
∪ E?

13/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Relationship with Gate Encodings

Resolving the clauses of a gate encoding on the output literal o results in a set of tautological clauses.

Idea: Optimized Variable Elimination for Gate Encodings E

Let a formula F = E ∪ R with gate clauses E and remainder R be given.
Apply variable elimination as follows:

(Ex ∪ Rx)⊗ (Ex ∪ Rx) ≡ (Ex ⊗ Rx) ∪ (Rx ⊗ Ex) ∪ (Rx ⊗ Rx) ∪ (Ex ⊗ Ex)

≡ (Ex ⊗ Rx) ∪ (Rx ⊗ Ex) ∪ (Rx ⊗ Rx) (Ex ⊗ Ex ≡ ⊤)

≡ (Ex ⊗ Rx) ∪ (Rx ⊗ Ex) ((Ex ⊗ Rx) ∪ (Rx ⊗ Ex) |= Rx ⊗ Rx)

Proof Idea:

Each clause c ∈ Rx ⊗ Rx , derived by resolving cx ∈ Rx and cx ∈ Rx ,
can also be derived by resolving clauses in Rx ⊗ Ex and Ex ⊗ Rx .

14/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Relationship with Gate Encodings

At a point where one technique is unable to make further progress, another technique might be applicable and even
modify the problem in a way that the first technique can make further progress.

Scheduling of Preprocessing Techniques

Heuristic Bounds
Bound the number of applications of a technique.

Scheduling of Techniques
Non-trivial, benefit of techniques depends on the formula.

Interleaving of Techniques
Apply techniques in a round-robin fashion.

Inprocessing
Interleave search and preprocessing.

15/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Scheduling of Preprocessing Techniques

Recap.

Classic Preprocessing Techniques:
Subsumption, Self-subsuming Resolution, Bounded Variable Elimination, Blocked Clause Elimination

Relationship between Preprocessing Techniques and Gate Encodings

Scheduling of Preprocessing Techniques

Next Session
Propagation-based Redundancy Notions and Proof Systems

16/16 May 26, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.

