
Practical SAT Solving

Lecture 7 – Redundancy Notions and Proofs of Unsatisfiability
Markus Iser, Dominik Schreiber | June 2, 2025

Recap: Preprocessing

Subsumption

Self-subsuming Resolution

Bounded Variable Elimination

Blocked Clause Elimination

Relationship with Tseitin Encoding

Scheduling

Heuristic Bounds

Interleaving of Techinques (f.ex. Round Robin)

Inprocessing: Interleave with solving

Algorithm 1: CDCL(CNF Formula F , &Assignment A← ∅)
1 if not PREPROCESSING then return UNSAT

2 while A is not complete do
3 UNIT PROPAGATION
4 if A falsifies a clause in F then
5 if decision level is 0 then return UNSAT
6 else
7 (clause, level)← CONFLICT-ANALYSIS
8 add clause to F and backtrack to level
9 continue

10 if RESTART then backtrack to level 0
11 if CLEANUP then forget some learned clauses
12 if not INPROCESSING then return UNSAT
13 BRANCHING
14 return SAT

2/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Conflict-driven Clause Learning (CDCL)

Let a formula F , and a literal x be given.

Failed Literal Probing

If F ∧ x ⊢UP ⊥, then F |= ¬x

=⇒ add {¬x} to F

Example (Failed Literal Probing)

Let F :=
{
{a,b}, {a,¬b}

}
.

Probing with ¬a results in a conflict, i.e., F ∧ ¬a ⊢UP ⊥.

Ergo, we can deduce F ≡ F ∧ a.

3/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Propagation-based Redundancy Notions

Let a formula F , a clause C ∈ F , and a literal x ∈ C be given.

Asymmetric Literal Elimination (ALE)

If F \ C ∧ C \ {x} ⊢UP x , then F |= C \ {x}.

=⇒ strengthen C to C \ {x}

Example (Asymmetric Literal Elimination (ALE))

Let F :=
{
{a,b}, {¬b,¬c}, {a, c,d}

}
, C := {a, c,d}, and x := c.

ALE results in the following propagation:
{
{a,b}, {¬b,¬c}, {¬a}, {¬d}

}
⊢UP ¬c.

Ergo, we can deduce F |= {a,d}.

F can not have a model which satisfies {a, c,d}, but not {a,d}.

4/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Propagation-based Redundancy Notions

Let a formula F , a clause C ∈ F , and a literal x ∈ C be given.

Asymmetric Tautology Elimination (ATE)

If F \ C ∧ C ⊢UP ⊥, then F |= C.

=⇒ remove C from F

Example (Asymmetric Tautology Elimination (ATE))

Let F :=
{
{a,b, c}, {¬b,d}, {a, c,d}

}
, and C := {a, c,d}.

ATE results in the following propagation:
{
{a,b, c}, {¬b,d}, {¬a}, {¬c}, {¬d}

}
⊢UP ⊥,

Ergo, we can deduce F ≡ F \ {a, c,d}.

{a, c,d} follows from the other clauses in F .

5/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Propagation-based Redundancy Notions

Variants: Efficient Algorithms and Implementations

Hidden Tautology Elimination (HTE) / Hidden Literal Elimination (HLE)
Restricted forms of ATE/ALE which only propagate over binary clauses.
Efficient HLE algorithm based on randomized DFS and application of paranthesis theorem: Unhiding1

Distillation / Vivification
Interleave assignment and propagation to detect ATs / ALs early on.

Avoidance of Redundant Propagations
Sort literals and clauses in a formula to simulate a trie, and reuse propagations that share the same prefix.

12011, Heule et al., Efficient CNF Simplification Based on Binary Implication Graphs

6/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Propagation-based Redundancy Notions

https://link.springer.com/chapter/10.1007/978-3-642-21581-0_17

Propagation-based Preprocessing

Propagation-based Redundancy Notions:

Failed Literal Probing, Asymmetric Literal Elimination, Asymmetric Tautology Elimination

Efficient Implementation of Propagation-based Redundancy Removal

Autarkies: Partial assignments that satisfy all touched clauses

Next Up

Proofs of Unsatisfiability

7/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.

Generalizations of Blocked Clauses

Reverse Unit Propagation (RUP)
A clause has the property RUP if and only if it is an Asymmetric Tautology (AT).

In CDCL, learned clauses are RUP at the moment of their learning.

Resolution Asymetric Tautologies (RATs)
A clause C is a RAT in a formula F if it contains a literal x such that
each resolvent in C ⊗x Fx is an asymmetric tautology.

Blocked Sets in particular are RATs.

8/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Relationship with Proof Checking

SAT Solvers are complex software systems, and bugs are not uncommon.

Trustworthiness of SAT Solvers

For satisfiable instances, SAT solvers can output the found assignment

For unsatisfiable instances, SAT solvers can output a proof of unsatisfiability

Both can be checked independently from the solver by much simpler, and formally verified program.

Example (Applications of Proof Checking)

Unsatisfiability of a formula might proof important properties of the problem at hand, such as:
Absence of certain bugs in a hardware design or software verification,
Optimality of a certain makespan in planning
etc. pp.

Feasibility of Proof Checking

RAT proof checking is polynomial in the proof-size, but proof-size is worst-case exponential in the formula-size.

Pragmatics: if we could generate it, we can also check it.

9/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Checking

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed.
Is it possible to cover the remaining board with dominoes?

Human: No, because each dominoe covers exactly one black and one white field, and there are two more black fields
than white fields.

10/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Systems: Motivating Example

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed.
Is it possible to cover the remaining board with dominoes?

Human: No, because each dominoe covers exactly one black and one white field, and there are two more black fields
than white fields.

10/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Systems: Motivating Example

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed.
Is it possible to cover the remaining board with dominoes?

SAT Solver: Let’s try and learn.

Impasse Detected → Resolution → More powerful Proof-system2

2Example taken from SAT lecture of Marijn J.H. Heule
11/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Systems: Motivating Example

https://www.cs.cmu.edu/~mheule/

Proof complexity is the study of the size of proofs in different proof systems.

Relationship with SAT Solving

Static analysis without algorithmic considerations

Questions of automizability not addressed

Lower bounds on proof size tell us how good a SAT solver can be in the best case

Upper bounds on proof size tell us how good a SAT solver should be

12/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Complexity

Resolution

Preserves equivalence

CDCL is as powerful as General Resolution

Well-known Exponential Lower Bounds:

For example, proofs of unsatisfiabilty of Pigeon Hole formulas,
are necessarily of exponential length in the resolution proof system (Haken 1985)

Heuristic for Finding Resolution Proofs: CDCL

13/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Resolution

Extended Resolution (Tseitin 1966)

Preserves satisfiability

Extended Resolution:
incorporate extension rule x ↔ a ∧ b for some a,b in formula and a new variable x

No Lower Bounds known

(Cook 1967) polynomial sized ER proof for PH formulas

Blocked Clauses (Kullmann 1999)

Preserves satisfiability

Generalization of ER Proof systems

Allows the addition and removal of blocked clauses

No Lower Bounds known

14/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Blocked Clauses

Can we get stronger without introducing new variables?
In the following: C is redundant with respect to F means that F and F ∧ C are equisatisfiable.

Example (Implication-based Redundancy)

Given F := {{x , y , z}, {¬x , y , z}, {x ,¬y , z}, {¬x ,¬y , z}}, and G := {{z}},
G is at least as satisfiable as F since F |= G

Implication-based Redundancy Notion

A clause C is redundant w.r.t. formula F iff there exists an assignment ω such that F ∧ ¬C |= (F ∧ C)|ω3

In other words: Potential models of F falsifiying C are still models of F and C modulo an assignment ω

In Practice: Propagation Redundancy

Approximate F ∧ ¬C |= (F ∧ C)|ω with unit propagation: F ∧ ¬C ⊢UP (F ∧ C)|ω
→ Efficiently Checkable Proofs: Tan et al., Verified Propagation Redundancy Checking in CakeML, TACAS 21

3Given an assignment α, the formula F |α is the formula after removing from F all clauses that are satisfied and all literals falsified by α

15/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Stronger Proof-Systems without new Variables

https://cakeml.org/tacas21.pdf

Let F be a formula, C a non-empty clause, and α the assignment blocked by C.
C is redundant with respect to F if and only if there exists an assignment ω such that ω satisfies C and F |α |= F |ω.4

Proof “only if”

Assume F and F ∧ C are equisatisfiable. Show that there exists an ω satisfying C and F |α |= F |ω.

If F |α is unsatisfiable, then the semantic implication trivially holds.

Assume now that F |α is satisfiable, implying that F is satisfiable.

Since F and F ∧ C are equisatisfiable, there exists an assignment ω that satisfies both F and C.

Since ω satisfies F, it holds that F |ω = ∅ and so F |α |= F |ω.

4Heule et al., 2019, Strong Extension-Free Proof Systems

16/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Theorem: Clause Redundancy via Implication

https://doi.org/10.1007/s10817-019-09516-0

Let F be a formula, C a non-empty clause, and α the assignment blocked by C.
C is redundant with respect to F if and only if there exists an assignment ω such that ω satisfies C and F |α |= F |ω.4

Proof “if”
Assume there exists an assignment ω satisfying C and F |α |= F |ω. Show that F and F ∧ C are equisatisfiable.

Let γ be a (total) assignment that satisfies F and falsifies C.
Since γ satisfies F , it must satisfy F |α and since F |α |= F |ω, it must also satisfy F |ω.

Now, we can turn γ into a satisfying assignment γ′ for F ∧ C as follows:

γ′(x) =

{
ω(x) if x ∈ vars(ω)
γ(x) otherwise

Since ω satisfies C, γ′ satisfies C.

Since γ satisfies F |ω, and vars(F |ω) ⊆ vars(γ) \ vars(ω), γ′ satisfies F .

⇒ γ′ satisfies F ∧ C.
4Heule et al., 2019, Strong Extension-Free Proof Systems

16/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Theorem: Clause Redundancy via Implication

https://doi.org/10.1007/s10817-019-09516-0

Autarky

Let a formula F and a partial assignment A be given. A clause C ∈ F is . . .

. . . touched by A if it contains a variable assigned in A

. . . satisfied by A if it contains a literal assigned to True by A

An autarky is a partial assignment A such that all touched clauses are satisfied.

Let α be an autarky of F . Then, F and F |α are equisatisfiable.5

⇒ All clauses touched by an autarky can be removed.

Edge Cases: Pure Literals and Satisfying Assignments are Autarkies

Application in Inprocessing: Kissat analyses assignments found by sprints of local search to find autarkies.

Example

The partial assignment A = {¬a,¬c} is an autarky for F :=
{
{¬a,b}, {b,¬c}, {a,¬b,¬c}

}
5The notion of autark assignments dates back to Monien and Speckenmeyer, Solving satisfiability in less than 2n steps, 1985

17/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Autarkies

https://doi.org/10.1016/0166-218X(85)90050-2

Conditional Autarkies
An assignment α = αcon ∪ αaut is a conditional autarky of F if αaut is an autarky of F |αcon

Then F and F ∧ (αcon → αaut) are equisatisfiable.

Example (Pruning Branches with a Conditional Autarky)

Let F :=
{
{x , y}, {x ,¬y}, {¬y ,¬z}

}
, and let αcon = {x} and αaut = {¬y}.

Then F |αcon =
{
{¬y ,¬z}

}
and αaut = {¬y} is an autarky of F |αcon, such that {x} ∪ {¬y} is a conditional autarky of F .

We can thus learn the clause {¬x ,¬y}.

18/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Pruning Branches with Conditional Autarkies

Idea: Also learn clauses if no conflict is detected, but a positive reduct is satisfiable.

Positive Reduct
Let a formula F and a partial, non-conflicting assignment α be given.

The positive reduct p(F , α) is the formula that contains all clauses of F satisfied by α and a clause C := ¬α.

A satisfying assignment ω of the positive reduct p(F , α) is a conditional autarky of F .

⇒ if the positive reduct is satisfiable, then the branch α can be pruned.

Key Idea of SDCL:

While solving a formula, check the positive reducts of current assignments α for satisfiability.

If p(F , α) is satisfiable, prune the branch α.

Positive reducts are typically very easy to solve.6
6Heule et al., 2017, PRuning Through Satisfaction

19/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Satisfaction Driven Clause Learning (SDCL)

https://doi.org/10.1007/978-3-319-70389-3_12

Problem: Automizability, how to find such short proofs?

Solving the Problem of Automizability: Practical Approaches

Resolution: Clause Learning

→ any classic CDCL implementation

Extended Resolution: Structural Boundend Variable Addiction (SBVA).

→ SBVA-CaDiCaL: Winner of SAT Competition 2023

PReLearning: Preprocessing adds specific Propagation Redundant (PR) clauses

→ KissatMAB-Prop: Winner of SAT Competition 2023 on UNSAT instances

Symmetry Breaking Predicates: Exclusion of Symmetric Solutions

→ BreakId-Kissat: Special Price at SAT Competition 2023

20/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From Modern to “Post-modern” SAT Solving

Recap.

Propagation-based Redundancy Notions

Proof Systems: Resolution, Extended Resolution, Blocked Clauses, Implication-based Redundancy

Autarkies, Conditional Autarkies, and Satisfaction Driven Clause Learning (SDCL)

21/21 June 2, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.

