

Practical SAT Solving

Lecture 7 – Redundancy Notions and Proofs of Unsatisfiability Markus Iser, Dominik Schreiber | June 2, 2025

Conflict-driven Clause Learning (CDCL)

Recap: Preprocessing

- Subsumption
- Self-subsuming Resolution
- Bounded Variable Elimination
- Blocked Clause Elimination
- Relationship with Tseitin Encoding
- Scheduling
 - Heuristic Bounds
 - Interleaving of Techinques (f.ex. Round Robin)
 - Inprocessing: Interleave with solving

Algorithm 1: CDCL(CNF Formula *F*, &Assignment $A \leftarrow \emptyset$)

- 1 if not PREPROCESSING then return UNSAT
- 2 while A is not complete do
- 3 UNIT PROPAGATION
- 4 **if** A falsifies a clause in F **then**
 - if decision level is 0 then return UNSAT

else

5

6

7

8

9

10

- $(clause, level) \leftarrow CONFLICT-ANALYSIS$
- add clause to *F* and backtrack to level **continue**
- if RESTART then backtrack to level 0
- 11 **if** CLEANUP **then** forget some learned clauses
- 12 if not INPROCESSING then return UNSAT
- 13 BRANCHING
- 14 return SAT

Let a formula F, and a literal x be given.

Failed Literal Probing	
If $F \land x \vdash_{UP} \bot$, then $F \models \neg x$	
\implies add $\{\neg x\}$ to <i>F</i>	

Example (Failed Literal Probing)

Let $F := \{\{a, b\}, \{a, \neg b\}\}$.

Probing with $\neg a$ results in a conflict, i.e., $F \land \neg a \vdash_{UP} \bot$.

Ergo, we can deduce $F \equiv F \wedge a$.

Let a formula F, a clause $C \in F$, and a literal $x \in C$ be given.

Asymmetric Literal Elimination (ALE)

If $F \setminus C \land \overline{C \setminus \{x\}} \vdash_{UP} \overline{x}$, then $F \models C \setminus \{x\}$.

 \implies strengthen *C* to *C* \ {*x*}

Example (Asymmetric Literal Elimination (ALE))

Let $F := \{\{a, b\}, \{\neg b, \neg c\}, \{a, c, d\}\}, C := \{a, c, d\}, \text{ and } x := c.$

ALE results in the following propagation: $\{\{a, b\}, \{\neg b, \neg c\}, \{\neg a\}, \{\neg d\}\} \vdash_{UP} \neg c$.

Ergo, we can deduce $F \models \{a, d\}$.

F can not have a model which satisfies $\{a, c, d\}$, but not $\{a, d\}$.

Let a formula F, a clause $C \in F$, and a literal $x \in C$ be given.

Asymmetric Tautology Elimination (ATE)

If $F \setminus C \wedge \overline{C} \vdash_{UP} \bot$, then $F \models C$.

 \implies remove *C* from *F*

Example (Asymmetric Tautology Elimination (ATE))

Let $F := \{\{a, b, c\}, \{\neg b, d\}, \{a, c, d\}\}$, and $C := \{a, c, d\}$.

ATE results in the following propagation: $\{\{a, b, c\}, \{\neg b, d\}, \{\neg a\}, \{\neg c\}, \{\neg d\}\} \vdash_{UP} \bot$,

Ergo, we can deduce $F \equiv F \setminus \{a, c, d\}$.

$\{a, c, d\}$ follows from the other clauses in *F*.

Variants: Efficient Algorithms and Implementations

Hidden Tautology Elimination (HTE) / Hidden Literal Elimination (HLE)

Restricted forms of ATE/ALE which only propagate over binary clauses. Efficient HLE algorithm based on randomized DFS and application of paranthesis theorem: **Unhiding**¹

Distillation / Vivification

Interleave assignment and propagation to detect ATs / ALs early on.

Avoidance of Redundant Propagations

Sort literals and clauses in a formula to simulate a trie, and reuse propagations that share the same prefix.

¹2011, Heule et al., Efficient CNF Simplification Based on Binary Implication Graphs

Propagation-based Preprocessing

- Propagation-based Redundancy Notions:
 - Failed Literal Probing, Asymmetric Literal Elimination, Asymmetric Tautology Elimination
- Efficient Implementation of Propagation-based Redundancy Removal
- Autarkies: Partial assignments that satisfy all touched clauses

Next Up

Proofs of Unsatisfiability

Relationship with Proof Checking

Generalizations of Blocked Clauses

Reverse Unit Propagation (RUP)

A clause has the property RUP if and only if it is an Asymmetric Tautology (AT).

In CDCL, learned clauses are RUP at the moment of their learning.

Resolution Asymetric Tautologies (RATs)

A clause *C* is a RAT in a formula *F* if it contains a literal *x* such that each resolvent in $C \otimes_x F_{\overline{x}}$ is an asymmetric tautology.

Blocked Sets in particular are RATs.

Proof Checking

SAT Solvers are complex software systems, and bugs are not uncommon.

Trustworthiness of SAT Solvers

- For satisfiable instances, SAT solvers can output the found assignment
- For unsatisfiable instances, SAT solvers can output a proof of unsatisfiability
- Both can be checked independently from the solver by much simpler, and **formally verified program**.

Example (Applications of Proof Checking)

Unsatisfiability of a formula might proof important properties of the problem at hand, such as:

- Absence of certain bugs in a hardware design or software verification,
- Optimality of a certain makespan in planning
- etc. pp.

Feasibility of Proof Checking

RAT proof checking is polynomial in the proof-size, but proof-size is worst-case exponential in the formula-size.

Pragmatics: if we could generate it, we can also check it.

Proof Systems: Motivating Example

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed. Is it possible to cover the remaining board with dominoes?

Proof Systems: Motivating Example

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed. Is it possible to cover the remaining board with dominoes?

Human: No, because each dominoe covers exactly one black and one white field, and there are two more black fields than white fields.

Proof Systems: Motivating Example

Example (Mutilated Chessboards)

Let a chessboard be given with two diagonally opposite corners removed. Is it possible to cover the remaining board with dominoes?

SAT Solver: Let's try and learn.

Impasse Detected

 \rightarrow Resolution

 \rightarrow More powerful Proof-system²

Proof Complexity

Proof complexity is the study of the size of proofs in different proof systems.

Relationship with SAT Solving

- Static analysis without algorithmic considerations
- Questions of automizability not addressed
- Lower bounds on proof size tell us how good a SAT solver can be in the best case
- Upper bounds on proof size tell us how good a SAT solver should be

Resolution

Resolution

- Preserves equivalence
- CDCL is as powerful as General Resolution
- Well-known Exponential Lower Bounds:
 - For example, proofs of unsatisfiability of Pigeon Hole formulas, are necessarily of exponential length in the resolution proof system (Haken 1985)
- Heuristic for Finding Resolution Proofs: CDCL

Blocked Clauses

Extended Resolution (Tseitin 1966)

- Preserves satisfiability
- Extended Resolution: incorporate extension rule x o a land b for some a, b in formula and a new variable x
- No Lower Bounds known
- (Cook 1967) polynomial sized ER proof for PH formulas

Blocked Clauses (Kullmann 1999)

- Preserves satisfiability
- Generalization of ER Proof systems
- Allows the addition and removal of blocked clauses
- No Lower Bounds known

Stronger Proof-Systems without new Variables

Can we get stronger without introducing new variables? In the following: *C* is redundant with respect to *F* means that *F* and $F \land C$ are equisatisfiable.

Example (Implication-based Redundancy)

Given $F := \{\{x, y, z\}, \{\neg x, y, z\}, \{x, \neg y, z\}, \{\neg x, \neg y, z\}\}$, and $G := \{\{z\}\}$, *G* is at least as satisfiable as *F* since $F \models G$

Implication-based Redundancy Notion

A clause C is redundant w.r.t. formula F iff there exists an assignment ω such that $F \wedge \neg C \models (F \wedge C)|_{\omega}^{3}$

In other words: Potential models of F falsifiying C are still models of F and C modulo an assignment ω

In Practice: Propagation Redundancy

Approximate $F \land \neg C \models (F \land C)|_{\omega}$ with unit propagation: $F \land \neg C \vdash_{UP} (F \land C)|_{\omega}$

→ Efficiently Checkable Proofs: Tan et al., Verified Propagation Redundancy Checking in CakeML, TACAS 21

³Given an assignment α , the formula $F|_{\alpha}$ is the formula after removing from F all clauses that are satisfied and all literals falsified by α

Theorem: Clause Redundancy via Implication

Let *F* be a formula, *C* a non-empty clause, and α the assignment blocked by *C*. *C* is redundant with respect to *F* if and only if there exists an assignment ω such that ω satisfies *C* and $F|_{\alpha} \models F|_{\omega}$.⁴

Proof "only if"

Assume *F* and *F* \wedge *C* are equisatisfiable. Show that there exists an ω satisfying *C* and *F*| $_{\alpha} \models$ *F*| $_{\omega}$.

If $F|_{\alpha}$ is unsatisfiable, then the semantic implication trivially holds.

Assume now that $F|_{\alpha}$ is satisfiable, implying that F is satisfiable.

Since *F* and $F \wedge C$ are equisatisfiable, there exists an assignment ω that satisfies both *F* and *C*.

Since ω satisfies F, it holds that $F|_{\omega} = \emptyset$ and so $F|_{\alpha} \models F|_{\omega}$.

⁴Heule et al., 2019, Strong Extension-Free Proof Systems

Theorem: Clause Redundancy via Implication

Let *F* be a formula, *C* a non-empty clause, and α the assignment blocked by *C*. *C* is redundant with respect to *F* if and only if there exists an assignment ω such that ω satisfies *C* and $F|_{\alpha} \models F|_{\omega}$.⁴

Proof "if"

Assume there exists an assignment ω satisfying *C* and $F|_{\alpha} \models F|_{\omega}$. Show that *F* and *F* \wedge *C* are equisatisfiable.

Let γ be a (total) assignment that satisfies F and falsifies C. Since γ satisfies F, it must satisfy $F|_{\alpha}$ and since $F|_{\alpha} \models F|_{\omega}$, it must also satisfy $F|_{\omega}$.

Now, we can turn γ into a satisfying assignment γ' for $F \wedge C$ as follows:

$$\gamma'(x) = egin{cases} \omega(x) & ext{if } x \in ext{vars}(\omega) \ \gamma(x) & ext{otherwise} \end{cases}$$

Since ω satisfies *C*, γ' satisfies *C*.

Since γ satisfies $F|_{\omega}$, and $vars(F|_{\omega}) \subseteq vars(\gamma) \setminus vars(\omega)$, γ' satisfies F.

 $\Rightarrow \gamma'$ satisfies $F \land C$.

⁴Heule et al., 2019, Strong Extension-Free Proof Systems

Autarkies

Autarky

Let a formula F and a partial assignment A be given. A clause $C \in F$ is . . .

- ... touched by A if it contains a variable assigned in A
- ... satisfied by A if it contains a literal assigned to True by A

An autarky is a partial assignment A such that all touched clauses are satisfied.

Let α be an autarky of *F*. Then, *F* and *F*| $_{\alpha}$ are equisatisfiable.⁵

 \Rightarrow All clauses touched by an autarky can be removed.

Edge Cases: Pure Literals and Satisfying Assignments are Autarkies

Application in Inprocessing: Kissat analyses assignments found by sprints of local search to find autarkies.

Example

The partial assignment $A = \{\neg a, \neg c\}$ is an autarky for $F := \{\{\neg a, b\}, \{b, \neg c\}, \{a, \neg b, \neg c\}\}$

⁵The notion of *autark assignments* dates back to Monien and Speckenmeyer, Solving satisfiability in less than 2ⁿ steps, 1985

Pruning Branches with Conditional Autarkies

Conditional Autarkies

An assignment $\alpha = \alpha_{con} \cup \alpha_{aut}$ is a conditional autarky of F if α_{aut} is an autarky of $F|_{\alpha_{con}}$

Then *F* and *F* \wedge ($\alpha_{con} \rightarrow \alpha_{aut}$) are equisatisfiable.

Example (Pruning Branches with a Conditional Autarky)

Let $F := \{\{x, y\}, \{x, \neg y\}, \{\neg y, \neg z\}\}$, and let $\alpha_{con} = \{x\}$ and $\alpha_{aut} = \{\neg y\}$. Then $F|_{\alpha_{con}} = \{\{\neg y, \neg z\}\}$ and $\alpha_{aut} = \{\neg y\}$ is an autarky of $F|_{\alpha_{con}}$, such that $\{x\} \cup \{\neg y\}$ is a conditional autarky of F. We can thus learn the clause $\{\neg x, \neg y\}$.

Satisfaction Driven Clause Learning (SDCL)

Idea: Also learn clauses if no conflict is detected, but a positive reduct is satisfiable.

Positive Reduct

Let a formula *F* and a partial, non-conflicting assignment α be given.

The positive reduct $p(F, \alpha)$ is the formula that contains all clauses of F satisfied by α and a clause $C := \neg \alpha$.

A satisfying assignment ω of the positive reduct $p(F, \alpha)$ is a conditional autarky of F.

 \Rightarrow if the positive reduct is satisfiable, then the branch α can be pruned.

Key Idea of SDCL:

While solving a formula, check the positive reducts of current assignments α for satisfiability.

If $p(F, \alpha)$ is satisfiable, prune the branch α .

Positive reducts are typically very easy to solve.⁶

⁶Heule et al., 2017, PRuning Through Satisfaction

From Modern to "Post-modern" SAT Solving

Problem: Automizability, how to find such short proofs?

Solving the Problem of Automizability: Practical Approaches

- Resolution: Clause Learning
 - \rightarrow any classic CDCL implementation
- **Extended Resolution**: Structural Boundend Variable Addiction (SBVA).
 - \rightarrow SBVA-CaDiCaL: Winner of SAT Competition 2023
- PReLearning: Preprocessing adds specific Propagation Redundant (PR) clauses
 - \rightarrow KissatMAB-Prop: Winner of SAT Competition 2023 on UNSAT instances
- Symmetry Breaking Predicates: Exclusion of Symmetric Solutions

 \rightarrow BreakId-Kissat: Special Price at SAT Competition 2023

Recap.

- Propagation-based Redundancy Notions
- Proof Systems: Resolution, Extended Resolution, Blocked Clauses, Implication-based Redundancy
- Autarkies, Conditional Autarkies, and Satisfaction Driven Clause Learning (SDCL)

