
Practical SAT Solving

Lecture 8 – Parallel SAT Solving
Markus Iser, Dominik Schreiber | June 16, 2025



Recap Lecture 7

Propagation-based Redundancy notions
Proof systems: Resolution, Extended Resolution, Blocked Clauses, Implication-based Redundancy
Autarkies, Conditional Autarkies, and Satisfaction Driven Clause Learning (SDCL)

Today: Parallel SAT Solving

Parallel SAT solving approaches
Basic search space splitting, Clause sharing, Cube&Conquer, Portfolio solvers

A deep dive into Mallob
Overview, Scalable clause sharing, Experiments and insights
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Overview



The Assembly of Nerds [23]

Complex and large logic puzzle
n puzzle experts at your disposition
— anti-social: work best if left undisturbed

How do we employ and “orchestrate” our experts?
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Parallel Solving: An analogy
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Partition search space at some decisions
⇒ Independent subproblems
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Approach I: Search Space Partitioning
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Approach I: Search Space Partitioning



Böhm & Speckenmeyer (1994-1996) [5]: 1st Parallel DPLL Implementation

Explicit Load Balancing

Completely distributed (no leader / worker roles)
A list of partial assignments is generated
Each process receives the entire formula and a few partial assignments
Each process can be worker or balancer:

Worker: solve or split the formula, use the partial assignments
Balancer: estimate workload, communicate, stop

Switch to balancer whenever worker is finished
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Explicit Partitioning



“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al. (1996) [26]

Centralized leader-worker architecture

Communication only between leader and workers
Leader assigns partial assignments using Guiding Path

Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
Leader splits open nodes and assigns job to workers

Workers return Guiding Path when terminated by leader
Modern features of fault tolerance, preemption of solving tasks
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Explicit Partitioning



Guiding Path: List of triples (variable, branch, open)
x1

x6

x4

x2

1 0

0 1

01

10

?〈
(x1, 0, 0), (x6, 1, 0), (x4, 1, 1), (x2, 0, 0)

〉
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Explicit Partitioning



SATZ (Jurkowiak et al., 2001) [15]: Work stealing for workload balancing

An idle worker requests work from the leader
The leader splits the work of the most loaded worker
The idle worker and most loaded worker get the parts

PaSAT (Blochinger et al., 2001-2003) [4]

First parallel CDCL with clause sharing
Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004) [8]

First shared-memory parallel solver
Multi-core processors started to be popular
uses same techniques as the previous solvers (guiding path etc.)
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Explicit Partitioning Solvers



F

x = 0 x = 1

F|x=0 F|x=1

Health bar

What we want: Even splits
Split yields sub-formulas of similar difficulty
Balanced partitioning of work
Few or no dynamic (re-)balancing needed

Uneven splits
One subformula is trivial, the other is just as hard as F
Ping-pong effect for workers processing trivial formulae,
communication / synchronization dominates run time

Bogus splits
Both F|x=0 and F|x=1 are just as hard as F
Divide&Conquer becomes Multiply&Surrender!
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Problems with Partitioning [25]
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The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

Unlikely that any of the workers will run out tasks
⇒ Hope of good load balancing in practice
Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)
Best performance mostly with problem-specific decision heuristics
State-of-the-art for hard combinatorial problems

Used to solve the “Pythagorean Triples” problem (∼200TB proof) [13]
... or more recently “Schur Number 5” (∼2PB proof) [12]

Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere) [2]
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The Assembly of Nerds

Complex and large logic puzzle
n puzzle experts at your disposition
— individual mindsets, approaches,

strengths & weaknesses
— anti-social: work best if left undisturbed

How do we employ and “orchestrate” our experts?
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Parallel Portfolios: An analogy
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Approach II: Pure Portfolio
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Approach II: Pure Portfolio



Virtual Best Solver (VBS) / Oracle

Consider n algorithms A1, . . . ,An where for each input x , algorithm Ai has run time TAi(x).
The Virtual Best Solver (VBS) for A1, . . . ,An has run time T ∗(x) = min{TA1(x), . . . ,TAn(x)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup [20]

Given parallel algorithm P and input x , the speedup of P is defined as sP(x) = TQ(x)/TP(x)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
There is always a sequential algorithm performing at least as well
Consequence: Not resource efficient, not scalable
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Pure Portfolio: Oracle view vs. Speedup view
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Pure Portfolio: Oracle view vs. Speedup view



ppfolio: Winner of Parallel Track in the 2011 SAT Competition [18]

Just a bash script combining the best sequential solvers from 2010:
˜$ ./solver1 f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solver4 f.cnf

Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior
Pure portfolios no longer permitted in SAT Competitions
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Pure SAT Portfolios
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6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)
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Assembly of Nerds, enhanced

The experts periodically gather for brief standup meetings
Via some protocol, the experts exchange the most valuable insights gained since the last meeting
Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:

learnt (conflict) clauses
Explored branch of search space — safe to prune
Potential step for deriving unsatisfiability
Result: Parallel search space pruning procedure

Combination of portfolio idea + clause exchanges: Clause sharing portfolio solvers
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Portfolio considerations
Which sequential solvers to employ?
How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .
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Portfolio considerations
Which sequential solvers to employ?
How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, . . .
— different random seeds, initial phases, input permutations, . . .

Clause exchange considerations
How often to share? (immediate/eager? delayed/lazy? periodic?)
How many clauses to share? (fixed volume? fixed quality criteria?)
Which clauses to share? (shortest? lowest LBD?)
How to implement sharing? (all-to-all? leader-worker? some communication graph?)
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ManySAT (Hamadi, Jabbour, and Sais 2009) [11]

Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, . . .
Eager exchange of clauses of length ≤ 8 via lockless queues

Plingeling (Biere 2010) [3]

Portfolio over Lingeling configurations (shared-memory parallelism)
Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length ≤ 40, LBD ≤ 8
Best parallel solver for many years
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Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines
(with no shared main memory) run together.
On each machine we run a number of processes,
each of which runs on a number of cores.
Processes commonly communicate by exchanging messages.

SuperMUC-NG: 6 336 nodes × 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
No shared memory — communication protocols required
Diminishing returns due to exhausted diversification of solvers
Some exchange schemes are conceptually not scalable [7]

“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

HPC schedulers, administrators, committees are used to regular,
easily parallelizable code with near-linear scaling
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Diminishing returns due to exhausted diversification of solvers

Some exchange schemes are conceptually not scalable [7]
“Star graph”: Master process collects, serves all exported clauses
Naïve (quadratic) all-to-all exchange of clauses

HPC schedulers, administrators, committees are used to regular,
easily parallelizable code with near-linear scaling
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HordeSat (Balyo, Sanders, Sinz 2015) [1]

Decentralization: No single leader node / process
Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

Diversification options:
— Native diversification (set of hand-crafted solver configurations)
— Modifying some initial variable phases
— Random seeds
Periodic all-to-all clause exchange
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HordeSat’s sharing logic

Only clauses with LBD ≤ 2 are considered for sharing
Constraint is lifted successively if processes under-produce

Solver threads write eligible clauses into shared buffer

Each process’ best clauses are shared with everyone
Limited to 1500 clause literals per process

⇒ Concatenation of p produced clause buffers
Approximate, post-hoc filtering of clauses

Issues:
Many (“high” LBD) clauses are not shared but discarded
“Holes” in buffer carrying no information
Duplicate clauses
Buffer grows proportionally with # proc.
⇒ Bottleneck w.r.t. communication, local work
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Super-linear speedups for individual instances
= speedup > c on c cores! How?

— SAT: “NP luck” – some solver got lucky
— UNSAT: distributed memory accommodates
— more clauses than any sequential solver
— General: sequential schedule of parallel algorithm
— may outperform sequential algorithm!

Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ≈ 2.2%
— Deploying HordeSat is often not worth it
No improvement beyond ≈ 500 cores
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Research Question
How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob
Mallob is a platform for SAT solving (and other NP-hard problems) with:

multi-user, on-demand, malleable scheduling and solving of many problems at once [19]
distributed SAT engine MallobSat: the HordeSat paradigm re-engineered and made efficient [24]
state-of-the-art SAT performance from dozens to thousands of cores [23]

https://satres.kikit.kit.edu/research/mallob
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Fundament: HORDESAT

– Two-level hybrid parallelization
– Periodic all-to-all clause sharing

Fix a certain sharing volume, spend it on
the globally most useful distinct clauses
Prioritize clauses by clause length over LBD
– At all stages! Also in export / import buffering
Minimize clause turnaround times
Support fluctuating workers (malleability )

S0 S1 Sc-1...

Export buffer

Import
buffers

Select, filter

...

...

...

Filter

Selective export

Collective sharing operation

Sharing buffer
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Custom collective operation
Aggregate information along
binary tree of processors
Detect duplicates during merge
Result is of compact shape
Sublinear buffer size growth:
Discard longest clauses as necessary

Observations

Clause needs to meet global quality threshold
to be shared successfully
Quality threshold adapts to state of solving

a b c d

e f g

b c f a e h d c di c

1.
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The Problem
Given a shared clause c and a solver S, decide if
S has received or produced c before (recently).

Previously: [1, 24]
Bloom filters: fixed size, risk of false positives

Mallob’22+: Exact distributed filter [23]
Process p remembers clauses it exported itself
and tags their producing solver(s)
Aggregate bit vector v where
v [i ] :=

∨
p (p remembers ci)

Only import clauses ci for which v [i ] = false

Use producer data to prevent mirroring clauses
back to their producer(s)

a i e h c b d f g

3.

Checks against local table

Bit vector
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We want to share L literals per sharing but may only get L′ < L successfully shared literals. Why?
1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation
3. Distributed filter blocked some of the transmitted clauses

Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2. , 3. )
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Seq. solving: central metric for whether to keep a clause
But: LBD found by solver A not necessarily meaningful
for solver B! → not as “global” as clause length

Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
⇒ Growing overhead (time, space) from low-LBD clauses

Possible approach: Increment each LBD before import [23]
Maintains LBD-based prioritization of clauses
Solver keeps more control over its LBD-2-clauses

But: Dropping LBD values alltogether performs just as well
in latest experiments [22]

2 3 |c|. . .

LBD

LBD′

Median RAM PAR-2

Orig. LBD 108.8 GiB 75.7
Reset LBD 95.6 GiB 74.3
LBD++ 97.3 GiB 72.9

768 cores × 349 instances × 300 s
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Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ?

No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!

Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver

“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret

Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is s(i) := Tseq(i)/Tpar(i). How do we compute overall speedups over inputs I?

Arithmetic mean Sarit = 1/|I| ·∑i∈I s(i) ? No statistical meaning!
Median Smed: central item in sorted list of speedups – Meaningful, very conservative

Geometric mean Sgeo = |I|
√(∏

i∈I s(i)
)

– Meaningful, conservative, only for running times > 0

Total Stot =
∑

i∈I Tseq(i)∑
i∈I Tpar(i)

– Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

Reduce such occurrences by running sequential solver (much) longer than parallel solver
“Generously” assume as solved in time T , or apply penalty k · T – makes speedups difficult to interpret
Omit from speedup calculation – clean separation of speedups from # solved instances

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Solver Evaluation Methodology



24 48 96 192 384 768 1536 3072
# cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)

Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

30/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Scaling of MallobSat [23]



24 48 96 192 384 768 1536 3072
# cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)

Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

30/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Scaling of MallobSat [23]



24 48 96 192 384 768 1536 3072
# cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)
Weak Scaling

0 1800 3600 5400 7200
Bound x for running time Tseq of seq. solver [s]

0

100

200

300

400

500

600

700

800

S
pe

ed
up

on
ta

sk
s

w
ith

T
se

q
≥

x

3072 cores
1536 cores
768 cores
384 cores
192 cores
96 cores
48 cores
24 cores

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

30/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Scaling of MallobSat [23]



0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

Sharing (SAT)

No sharing (SAT)

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

Sharing (UNSAT)

No sharing (UNSAT)

768 cores × 349 “solvable” instances from ISC 2022 × 300 s, portfolio “KCLG”

31/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Merit of Clause Sharing, SAT vs. UNSAT



0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

KCLG (SAT)

L (SAT)

0 100 200 300

Run time t [s]

0

50

100

150

#
in

st
an

ce
s

so
lv

ed
in
≤
t
s

KCLG (UNSAT)

L (UNSAT)

768 cores × 349 “solvable” instances from ISC 2022 × 300 s, with clause sharing

32/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Merit of Diverse Portfolio, SAT vs. UNSAT



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective

With sharing: 768× the same program performs well?!
⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div +share
+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective
With sharing:

768× the same program performs well?!
⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div +share
–div +share
+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective
With sharing: 768× the same program performs well?!

⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div +share
–div +share
+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective
With sharing: 768× the same program performs well?!
⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div +share
–div +share
+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective
With sharing: 768× the same program performs well?!
⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



0 60 120 180 240 300
Running time t [s]

0

50

100

150

200

250

300

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

+div +share
–div +share
+div –share
–div –share

349 problems from SAT Comp. 2022 · CaDiCaL only

Without clause sharing, diversification is highly effective
With sharing: 768× the same program performs well?!
⇒ Clause imports deviate due to parallel execution
⇒ “Butterfly effect” → effective sharing!

Similar findings @ 3072 cores
Default CADICAL with primitive diversification
(seeds, phases) performs competitively
Fully diversified portfolio without clause sharing does not

⇒ Portfolio of diverse configurations is dispensable
⇒ Clause sharing is essential

33/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]



Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio
“a problem instance is independently given to a collection of solvers competing for a solution in parallel”

– Fichte et al., 2023 [9]
“each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing leads to
surprisingly good performance for small portfolio sizes” – Ozdemir et al., 2021 [17]

Our view, based on empirical observations:

MALLOBSAT is a Clause-sharing solver with diversification
Clause sharing = main driver of scalability
Adding explicit diversification is beneficial but not essential
Applicability to other solvers?
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Massive parallelism for a single formula
Faster solving times
Can resolve problems out of reach for sequential solvers
Not that resource efficient (on average)

Solving many formulas in parallel
Embarrassingly parallel
Solving itself less powerful

Best of both worlds? [19]
On demand scheduling of incoming (SAT) jobs
Resize jobs during their execution as needed
Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

F1 F2

F3
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Problem statement
Given x ∈ {400,1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.
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Problem statement
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Extreme 1: 400 sequential solvers
“Embarrassingly parallel” job processing
Highly efficient (no redundant work)
Sequential solving only → no scaling opportunity
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Problem statement
Given x ∈ {400,1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Extreme 1: 400 sequential solvers (400×Kissat)

Extreme 2: “Monolithic” parallel solving
One job at a time
Generous assumption: instances sorted by run time
Maximizes per-instance speedups
No task parallelism, poor efficiency
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Problem statement
Given x ∈ {400,1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Extreme 1: 400 sequential solvers (400×Kissat)
Extreme 2: “Monolithic” parallel solving

Middle ground 1: Divide cores evenly among jobs
Solid speedups at small-scale parallel SAT
After 15 min, > 50% of cores are idling
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Finishing jobs yield resources to remaining jobs
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Streamlined clause-sharing solver design, away from portfolios [22]

Preprocessing

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

Address high main memory requirements, especially for huge formulas (cf. [10])

Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

Applying technology to related tools, applications
– Verification (Bounded Model Checking, SMT Solving)
– Optimization (MaxSAT Solving)
– Crucial piece of technology: Distributed incremental SAT solving! [21]

Uses of GPUs ?? (Stochastic Local Search [6], Inprocessing offloading [16], . . . )

Proofs of unsatisfiability (next lecture!)
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Uses of GPUs ?? (Stochastic Local Search [6], Inprocessing offloading [16], . . . )

Proofs of unsatisfiability (next lecture!)
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Parallel SAT Solving

Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— diversifies solvers effectively in and of itself

Exploit embarrassingly parallel job processing for interactive solving & best efficiency

Next Up

Proof pragmatics: Formats for different proof systems in the wild
Bringing proof technology to parallel and distributed SAT solving
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