Practical SAT Solving

Lecture 8 — Parallel SAT Solving SAt
Markus Iser, Dominik Schreiber | June 16, 2025 Scolse Aomdied Reosonig




Overview

Recap Lecture 7

m Propagation-based Redundancy notions
m Proof systems: Resolution, Extended Resolution, Blocked Clauses, Implication-based Redundancy

m Autarkies, Conditional Autarkies, and Satisfaction Driven Clause Learning (SDCL)

Today: Parallel SAT Solving

Parallel SAT solving approaches
m Basic search space splitting, Clause sharing, Cube&Conquer, Portfolio solvers

A deep dive into Mallob
m Overview, Scalable clause sharing, Experiments and insights
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Parallel Solving: An analogy
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m Complex and large logic puzzle 419
m n puzzle experts at your disposition 8 13 5] 9] 12
— anti-social: work best if left undisturbed Q) 96 3 3 gi Q)
How do we employ and “orchestrate” our experts? L 28 0.5
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Approach I: Search Space Partitioning
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Approach I: Search Space Partitioning
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Explicit Partitioning

Bohm & Speckenmeyer (1994-1996) [5]: 1st Parallel DPLL Implementation

Explicit Load Balancing

m Completely distributed (no leader / worker roles)
m A list of partial assignments is generated

m Each process receives the entire formula and a few partial assignments

m Each process can be worker or balancer:
m Worker: solve or split the formula, use the partial assignments
m Balancer: estimate workload, communicate, stop

m Switch to balancer whenever worker is finished
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Explicit Partitioning

“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al. (1996) [26]

Centralized leader-worker architecture

m Communication only between leader and workers
m Leader assigns partial assignments using Guiding Path
m Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
m Leader splits open nodes and assigns job to workers

m Workers return Guiding Path when terminated by leader
m Modern features of fault tolerance, preemption of solving tasks
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Explicit Partitioning

Guiding Path: List of triples (variable, branch, open)

X1
A
L6
%\
L4
AN
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Explicit Partitioning Solvers

SATZ (Jurkowiak et al., 2001) [15]: Work stealing for workload balancing

m An idle worker requests work from the leader
m The leader splits the work of the most loaded worker
m The idle worker and most loaded worker get the parts

PaSAT (Blochinger et al., 2001-2003) [4]

m First parallel CDCL with clause sharing
m Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004) []

m First shared-memory parallel solver
m Multi-core processors started to be popular
m uses same techniques as the previous solvers (guiding path etc.)
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Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

? m Few or no dynamic (re-)balancing needed
x =20 r=1
S — I —
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Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

— m Few or no dynamic (re-)balancing needed
F Uneven splits
=0 r=1 m One subformula is trivial, the other is just as hard as F
m Ping-pong effect for workers processing trivial formulae,
—— — communication / synchronization dominates run time
ﬂsz F|:1::1
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Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

— m Few or no dynamic (re-)balancing needed
F Uneven splits
=0 r=1 m One subformula is trivial, the other is just as hard as F
m Ping-pong effect for workers processing trivial formulae,
— — communication / synchronization dominates run time
Fla—o Flp—1 Bogus splits

m Both F,_o and F|,_ are just as hard as F
m Divide&Conquer becomes Multiply&Surrender!
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

m Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

m Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

m Best performance mostly with problem-specific decision heuristics
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Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

m Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

m Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

m Best performance mostly with problem-specific decision heuristics

m State-of-the-art for hard combinatorial problems

m Used to solve the “Pythagorean Triples” problem (~200TB proof) [13]
m ... or more recently “Schur Number 5” (~2PB proof) [12]

m Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere) [2]
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Parallel Portfolios: An analogy

o OO0

> 58] 5
m Complex and large logic puzzle 3719 73 1 £5)
m N puzzle experts at your disposition 419 )
— individual mindsets, approaches, S| 3] 5] 9] |2
strerlmgths.& weaknessgs | OO 96 3 3 g U0
— anti-social: work best if left undisturbed 7 6/8
How do we employ and “orchestrate” our experts? 28
OO Q)

11/41  June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT



Approach lI: Pure Portfolio
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Approach lI: Pure Portfolio
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Pure Portfolio

Approach i
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup [20]

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Tq(x)/ Tp(X)
where Q is the best available sequential algorithm.
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Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup [20]

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Tq(x)/ Tp(X)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
m There is always a sequential algorithm performing at least as well
m Consequence: Not resource efficient, not scalable
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Pure SAT Portfolios

ppfolio: Winner of Parallel Track in the 2011 SAT Competition [15]

m Just a bash script combining the best sequential solvers from 2010:
"$ ./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

m Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”
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Pure SAT Portfolios

ppfolio: Winner of Parallel Track in the 2011 SAT Competition [15]

m Just a bash script combining the best sequential solvers from 2010:
"$ ./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

m Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

m Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

m Pure portfolios no longer permitted in SAT Competitions
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Approach llI+: Cooperative Portfolio
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Approach llI+: Cooperative Portfolio
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Approach llI+: Cooperative Portfolio
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Approach llI+: Cooperative Portfolio
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Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:
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Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
m Explored branch of search space — safe to prune
m Potential step for deriving unsatisfiability
m Result: Parallel search space pruning procedure
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Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
m Explored branch of search space — safe to prune
m Potential step for deriving unsatisfiability
m Result: Parallel search space pruning procedure

Combination of portfolio idea + clause exchanges: Clause sharing portfolio solvers
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Clause Sharing Portfolios: Desigh Space

Portfolio considerations
m Which sequential solvers to employ?

m How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Cadical::diversify( seed) {
solver->set(name: "seed", val: seed);
switch (getDiversificationIndex % getNumOriginalDiversifications()) {
: okay solver->set(name: "phase ; break;
1: okay = solver->configure("'
: okay = solver->set(name: "elim", val: 0); break;

: okay = solver->configure("unsat"); break;
1: okay = solver->set(name: "condition", wval: 1); break;
: okay = solver->set(name: "v (", wval: 0); break;
: okay = solver->set(name: rtint", wval: 100); break;
: okay = solver->set(name: " r", val: 1); break;
: okay = solver->set(name: ": Le", wval: 1) && solver->set(name: '
: okay solver->set(name: ocessing", wval: 0); break;
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Clause Sharing Portfolios: Desigh Space

Portfolio considerations
m Which sequential solvers to employ?

m How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Clause exchange considerations
m How often to share? (immediate/eager? delayed/lazy? periodic?)
m How many clauses to share? (fixed volume? fixed quality criteria?)
m Which clauses to share? (shortest? lowest LBD?)
m How to implement sharing? (all-to-all? leader-worker? some communication graph?)
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Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009) [11]

m Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, ...

m Eager exchange of clauses of length < 8 via lockless queues
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Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009) [11]

m Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, ...

m Eager exchange of clauses of length < 8 via lockless queues

Plingeling (Biere 2010) [3]

m Portfolio over Lingeling configurations (shared-memory parallelism)

m Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length < 40, LBD < 8

m Best parallel solver for many years
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Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines 7
(with no shared main memory) run together. {10
On each machine we run a number of processes, :
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages. -
SuperMUC-NG: 6 336 nodes x 48 cores

19/41  June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT




Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines
(with no shared main memory) run together.

On each machine we run a number of processes,
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages. *
SuperMUC-NG: 6 336 nodes x 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
m No shared memory — communication protocols required

m Diminishing returns due to exhausted diversification of solvers
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Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines
(with no shared main memory) run together.

On each machine we run a number of processes,
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.
SuperMUC-NG: 6 336 nodes x 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
m No shared memory — communication protocols required

m Diminishing returns due to exhausted diversification of solvers

m Some exchange schemes are conceptually not scalable [7]

m “Star graph”: Master process collects, serves all exported clauses
m Naive (quadratic) all-to-all exchange of clauses

m HPC schedulers, administrators, committees are used to regular,
easily parallelizable code with near-linear scaling
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Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015) [1]

m Decentralization: No single leader node / process

m Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process
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Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015) [1]

m Decentralization: No single leader node / process

m Two-level (“hybrid”) parallelization

— One or several processes on each machine

— Multiple solver threads (+ communication thread) on each process
m Diversification options:

— Native diversification (set of hand-crafted solver configurations)

— Modifying some initial variable phases

— Random seeds

m Periodic all-to-all clause exchange
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Clause Exchange in HordeSat

HordeSat’s sharing logic

m Only clauses with LBD < 2 are considered for sharing
m Constraint is lifted successively if processes under-produce

m Solver threads write eligible clauses into shared buffer
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Clause Exchange in HordeSat

HordeSat’s sharing logic PEs () @ @, Q O
| b il [
L

[a]

m Only clauses with LBD < 2 are considered for sharing Exported |?|
m Constraint is lifted successively if processes under-produce clause |¢

d

m Solver threads write eligible clauses into shared buffer buffers

m Each process’ best clauses are shared with everyone

m Limited to 1500 clause literals per process
= Concatenation of p produced clause buffers W
m Approximate, post-hoc filtering of clauses
--------
AllGather

AN
OIOX XOX XX

Import clauses to solvers
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Clause Exchange in HordeSat

HordeSat’s sharing logic PEs @ @ O Q O
d i b — c
m Only clauses with LBD < 2 are considered for sharing Exported |b Il T
m Constraint is lifted successively if processes under-produce clause |¢ - p
m Solver threads write eligible clauses into shared buffer buffers B f ||
m Each process’ best clauses are shared with everyone L | L

m Limited to 1500 clause literals per process

= Concatenation of p produced clause buffers W

m Approximate, post-hoc filtering of clauses

--------

Issues: AllGather

m Many (“high” LBD) clauses are not shared but discarded m

m “Holes” in buffer carrying no information

m Duplicate clauses O Q ‘ Q ‘ Q Q

m Buffer grows proportionally with # proc. Import clauses to solvers
= Bottleneck w.r.t. communication, local work
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HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?
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HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?

— SAT: “NP luck” — some solver got lucky

— UNSAT: distributed memory accommodates
more clauses than any sequential solver

— General: sequential schedule of parallel algorithm
may outperform sequential algorithm!
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HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?

— SAT: “NP luck” — some solver got lucky

— UNSAT: distributed memory accommodates
more clauses than any sequential solver

— General: sequential schedule of parallel algorithm
may outperform sequential algorithm!

m Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ~ 2.2%
— Deploying HordeSat is often not worth it

m No improvement beyond ~ 500 cores
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From HordeSat to MallobSat

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?
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From HordeSat to MallobSat

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob

Mallob is a platform for SAT solving (and other NP-hard problems) with:
m multi-user, on-demand, malleable scheduling and solving of many problems at once [19]
m distributed SAT engine MallobSat: the HordeSat paradigm re-engineered and made efficient [24]
m state-of-the-art SAT performance from dozens to thousands of cores [23]

| I } Q l() https://satres.kikit.kit.edu/research/mallob

schedule - balance - solve - prove
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Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing
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Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses
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Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering
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Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering

m Minimize clause turnaround times
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Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering

m Minimize clause turnaround times
m Support fluctuating workers (malleability)
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Clause Exchange in Mallob [23]

Custom collective operation 1.

m Aggregate information along Qa bjc| d
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape (E Q f 9

m Sublinear buffer size growth:

Discard longest clauses as necessary Q
oo ) Qeerman  Oieran Qm
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Clause Exchange in Mallob [23]

Custom collective operation 1.

m Aggregate information along Qa bjc| d
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

"QE Sorted aggregation
(space-limited, sublinear)
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Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c|b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

N | .
"ya Sorted aggregation
(space-limited, sublinear)
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Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c|b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

N | .
"ya Sorted aggregation
(space-limited, sublinear)

2. Broadcast alilelffc[b] d | f g
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Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c]b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

m Clause needs to meet global quality threshold 2. Broadcast alilefife[b| d [ f g
to be shared successfully

m Quality threshold adapts to state of solving

N | .
"ya Sorted aggregation
(space-limited, sublinear)
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Clause Filtering

The Problem

Given a shared clause ¢ and a solver S, decide if
S has received or produced c before (recently).

Previously: [1, 24]
m Bloom filters: fixed size, risk of false positives
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Clause Filtering

The Problem

Given a shared clause ¢ and a solver S, decide if
S has received or produced c before (recently).

Previously: [1, 24]
m Bloom filters: fixed size, risk of false positives
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself
and tags their producing solver(s)
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Clause Filtering

The Problem 3.

Given a shared clause ¢ and a solver S, decide if |
S has received or produced ¢ before (recently). T

[Tle[h]c]o]
Previously: [1, 24] Aggregation: i
m Bloom filters: fixed size, risk of false positives Bitwise “OR”
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself 1]
and tags their producing solver(s)

m Aggregate bit vector v where 4
v[i] ==V, (p remembers c;)

m Only import clauses c¢; for which v[i] = false

Broadcast Global filter vector

o [
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Clause Filtering

The Problem 3.

Given a shared clause ¢ and a solver S, decide if |
S has received or produced ¢ before (recently). T

[Tle[h]c]o]
Previously: [1, 24] Aggregation: i
m Bloom filters: fixed size, risk of false positives Bitwise “OR”
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself 1]
and tags their producing solver(s)

m Aggregate bit vector v where 4
v[i] ==V, (p remembers c;)

m Only import clauses c¢; for which v[i] = false

m Use producer data to prevent mirroring clauses
back to their producer(s)

Broadcast Global filter vector

o [
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Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses
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Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses
Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2., 3.)
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Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses
Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2., 3.)
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Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length
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Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses
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Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses

Possible approach: Increment each LBD before import [23]
m Maintains LBD-based prioritization of clauses
m Solver keeps more control over its LBD-2-clauses
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Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses

Possible approach: Increment each LBD before import [23]
m Maintains LBD-based prioritization of clauses
m Solver keeps more control over its LBD-2-clauses

But: Dropping LBD values alltogether performs just as well
in latest experiments [22]
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Orig. LBD 108.8GiB 75.7
Reset LBD 95.6GIB 74.3
LBD++ 97.3GiB 72.9

768 cores x 349 instances x 300s
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ?
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!
m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!
m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative

m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver
m “Generously” assume as solved in time T, or apply penalty k- T — makes speedups difficult to interpret
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Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,-Ez s(f)) — Meaningful, conservative, only for running times > 0
m Total S;; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver

m “Generously” assume as solved in time T, or apply penalty k- T — makes speedups difficult to interpret
m Omit from speedup calculation — clean separation of speedups from # solved instances
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Scaling of MallobSat [
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Scaling of MallobSat [23]
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Scaling of MallobSat [23]
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Merit of Clause Sharing, SAT vs. UNSAT
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Merit of Diverse Portfolio, SAT vs. UNSAT
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Diversification vs. Sharing @ 768 Cores [23]
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Diversification vs. Sharing @ 768 Cores |
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Diversification vs. Sharing @ 768 Cores [23]

300 - A —

V| 250 -

s | S

8 200 - l; ............

= T T L

(@) ,'

» 150 !

O I

O l

S 100 4 ¢

» i ---- +div +share

£ n —div +share

OO0 e +div —share
1’ —div —share

O | 1 1 1 1

0 60 120 180 240 300

Running time ¢ [s]

349 problems from SAT Comp. 2022 - CaDiCaL only

33/41

m Without clause sharing, diversification is highly effective

m With sharing: 768x the same program performs well?!
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Diversification vs. Sharing @ 768 Cores [23]
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m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!

=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!
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Diversification vs. Sharing @ 768 Cores [23]

# instances solved in < ts

33/41
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m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!
=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!
m Similar findings @ 3072 cores

m Default CADICAL with primitive diversification

(seeds, phases) performs competitively
m Fully diversified portfolio without clause sharing does not
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Diversification vs. Sharing @ 768 Cores [23]

# instances solved in < ts
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m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!
=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!
m Similar findings @ 3072 cores

m Default CADICAL with primitive diversification

(seeds, phases) performs competitively
m Fully diversified portfolio without clause sharing does not

= Portfolio of diverse configurations is dispensable
= Clause sharing is essential
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MallobSat: A Portfolio Solver?

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

m “a problem instance is independently given to a collection of solvers competing for a solution in parallel”’
— Fichte et al., 2023 [9]

m “each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing leads to
surprisingly good performance for small portfolio sizes” — Ozdemir et al., 2021 [17]
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MallobSat: A Portfolio Solver?

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

m “a problem instance is independently given to a collection of solvers competing for a solution in parallel”’
— Fichte et al., 2023 [9]

m “each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing leads to
surprisingly good performance for small portfolio sizes” — Ozdemir et al., 2021 [17]

Our view, based on empirical observations:

MALLOBSAT is a Clause-sharing solver with diversification
m Clause sharing = main driver of scalability
m Adding explicit diversification is beneficial but not essential
m Applicability to other solvers?
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Better Efficiency?

Massive parallelism for a single formula
m Faster solving times
m Can resolve problems out of reach for sequential solvers
m Not that resource efficient (on average)
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Better Efficiency?

Massive parallelism for a single formula

m Faster solving times
m Can resolve problems out of reach for sequential solvers

m Not that resource efficient (on average)

Solving many formulas in parallel
m Embarrassingly parallel
m Solving itself less powerful
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Better Efficiency?

Massive parallelism for a single formula

m Faster solving times
m Can resolve problems out of reach for sequential solvers

m Not that resource efficient (on average)

Solving many formulas in parallel
m Embarrassingly parallel
m Solving itself less powerful

Best of both worlds? [19]
m On demand scheduling of incoming (SAT) jobs
m Resize jobs during their execution as needed

m Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present
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Scheduling Many SAT Tasks [23]

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.
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Scheduling Many SAT Tasks |

Problem statement
Given x € {400, 1600,6400} cores and 400 SAT tasks,

solve as many tasks as possible.

Extreme 1: 400 sequential solvers
m “Embarrassingly parallel” job processing

m Highly efficient (no redundant work)
m Sequential solving only — no scaling opportunity
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Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Extreme 2: “Monolithic” parallel solving

m One job at a time
m Generous assumption: instances sorted by run time

m Maximizes per-instance speedups
m No task parallelism, poor efficiency
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Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Middle ground 1: Divide cores evenly among jobs
m Solid speedups at small-scale parallel SAT
m After 15 min, > 50% of cores are idling
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Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Middle ground 2: Divide cores dynamically among jobs
m Finishing jobs yield resources to remaining jobs
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Scheduling Many SAT Tasks [23]

350 A

Problem statement

Given x € {400, 1600, 6400} cores and 400 SAT tasks, 300 1
solve as many tasks as possible.
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Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

37/41

Preprocessing

/\

/\

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL
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Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]
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Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL
m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])
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Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]
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[ IV |C AN I AN

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL
m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]
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Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]
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Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]

m Uses of GPUs 77 (Stochastic Local Search [6], Inprocessing offloading [16], .. .)
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Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

A O AN TAL A A

_____ q-----4-----7 Preprocessing

[ IV |C AN TAL A A

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]

m Uses of GPUs 77 (Stochastic Local Search [6], Inprocessing offloading [16], .. .)
m Proofs of unsatisfiability (next lecture!)
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Recap

Parallel SAT Solving

m Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

m All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— diversifies solvers effectively in and of itself

m Exploit embarrassingly parallel job processing for interactive solving & best efficiency

m Proof pragmatics: Formats for different proof systems in the wild
m Bringing proof technology to parallel and distributed SAT solving
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