Practical SAT Solving

Lecture 8 — Parallel SAT Solving SAt
Markus Iser, Dominik Schreiber | June 16, 2025 Scolse Aomdied Reosonig

Overview

Recap Lecture 7

m Propagation-based Redundancy notions
m Proof systems: Resolution, Extended Resolution, Blocked Clauses, Implication-based Redundancy

m Autarkies, Conditional Autarkies, and Satisfaction Driven Clause Learning (SDCL)

Today: Parallel SAT Solving

Parallel SAT solving approaches
m Basic search space splitting, Clause sharing, Cube&Conquer, Portfolio solvers

A deep dive into Mallob
m Overview, Scalable clause sharing, Experiments and insights

2/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Parallel Solving: An analogy

o OO0

6/8
The Assembly of Nerds [25] OO 713 g Y
. a2l 19 415
m Complex and large logic puzzle 419
m n puzzle experts at your disposition 8 13 5] 9] 12
— anti-social: work best if left undisturbed Q) 96 3 3 gi Q)
How do we employ and “orchestrate” our experts? L 28 0.5
OO Q)

3/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Approach I: Search Space Partitioning

G- 68 G-
OO e a4 OO e o OO e O
1 BLIGL 10 12 R BLISLOL 2 1 BLI5I0I 12
1 316 2 3[6 3 316
o6 38 o6 318 o6 38
7L 1Bl 7L 1Bl 7L 1Bl
218 28 28
73689 73689 73689
OO e = U e = U e ¥
S BLIBLIo 12 S B O[2 Sl BB O 12
Al 36 3/6 & 36
o6 38 o6 318 o6 38
ARG HEEGE ARG
218 28 28
7368 7368 7368
O 399 4% O 3.99 4% S\, 3.99 4%
1 BLIS 0l 12 1 BLISLOl 12 1 BLI510I 12
3[6 3[6 9 3[6
o6l [11188 o6 318 o6 38
7L 1Bl ARG 7L 1Bl
218 28 28

4/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Approach I: Search Space Partitioning

SiES e SES
Q0O e Crag OO e Bran O e e
[3L 0 12 8 BLI5 o 12 [3510 12
1 3[6 2 1 13[6 B 13[6
96 I 96 R 96 I
EEGE EEGE EEGE
oI o8 I
OO P OO FEE OO R Phhe
1ot 40 St 45 S 45 m Partition search space at some decisions
B WEEE S99 RN T RERI = Independent subproblems
96 3-8 96 3-8 96 3-8
EEGE EEGE EEGE
oI o8 o8
WG TG WG
U SIMi2 s JO 3D am U SIMie a8
[3LI5 1o 2 350 2 [3510 12
3[6 3[6 9 3[6
G EMEEEINE 96 3R 96 S
EEGE G EEGE
oI o8 o8

4/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Explicit Partitioning

Bohm & Speckenmeyer (1994-1996) [5]: 1st Parallel DPLL Implementation

Explicit Load Balancing

m Completely distributed (no leader / worker roles)
m A list of partial assignments is generated

m Each process receives the entire formula and a few partial assignments

m Each process can be worker or balancer:
m Worker: solve or split the formula, use the partial assignments
m Balancer: estimate workload, communicate, stop

m Switch to balancer whenever worker is finished

5/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Explicit Partitioning

“PSATO: a Distributed Propositional Prover and its Application to Quasigroup Problems”, Zhang et al. (1996) [26]

Centralized leader-worker architecture

m Communication only between leader and workers
m Leader assigns partial assignments using Guiding Path
m Each node in the search tree is open or closed
— closed = branch is explored / proven unsat
m Leader splits open nodes and assigns job to workers

m Workers return Guiding Path when terminated by leader
m Modern features of fault tolerance, preemption of solving tasks

6/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Explicit Partitioning

Guiding Path: List of triples (variable, branch, open)

X1
A
L6
%\
L4
AN

7/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Explicit Partitioning Solvers

SATZ (Jurkowiak et al., 2001) [15]: Work stealing for workload balancing

m An idle worker requests work from the leader
m The leader splits the work of the most loaded worker
m The idle worker and most loaded worker get the parts

PaSAT (Blochinger et al., 2001-2003) [4]

m First parallel CDCL with clause sharing
m Similar to PSATO/SATZ: leader/worker, guiding path, work stealing

ySAT (Feldman et al., 2004) []

m First shared-memory parallel solver
m Multi-core processors started to be popular
m uses same techniques as the previous solvers (guiding path etc.)

8/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

? m Few or no dynamic (re-)balancing needed
x =20 r=1
S — I —

9/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

— m Few or no dynamic (re-)balancing needed
F Uneven splits
=0 r=1 m One subformula is trivial, the other is just as hard as F
m Ping-pong effect for workers processing trivial formulae,
—— — communication / synchronization dominates run time
ﬂsz F|:1::1

9/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Problems with Partitioning [25]

What we want: Even splits
m Split yields sub-formulas of similar difficulty
m Balanced partitioning of work

— m Few or no dynamic (re-)balancing needed
F Uneven splits
=0 r=1 m One subformula is trivial, the other is just as hard as F
m Ping-pong effect for workers processing trivial formulae,
— — communication / synchronization dominates run time
Fla—o Flp—1 Bogus splits

m Both F,_o and F|,_ are just as hard as F
m Divide&Conquer becomes Multiply&Surrender!

9/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

10/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

m Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

m Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

m Best performance mostly with problem-specific decision heuristics

10/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Cube and Conquer

The Cube&Conquer paradigm (Heule & Biere, 2011) [14]

Generate a large amount (millions) of partial assignments (“cubes”) and randomly assign them to workers.

m Unlikely that any of the workers will run out tasks
= Hope of good load balancing in practice

m Partial assignments are generated using a look-ahead solver
(breadth-first search up to a limited depth)

m Best performance mostly with problem-specific decision heuristics

m State-of-the-art for hard combinatorial problems

m Used to solve the “Pythagorean Triples” problem (~200TB proof) [13]
m ... or more recently “Schur Number 5” (~2PB proof) [12]

m Examples: March (Heule) + iLingeling (Biere) introduced in 2011; Treengeling (Biere) [2]

10/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Parallel Portfolios: An analogy

o OO0

> 58] 5
m Complex and large logic puzzle 3719 73 1 £5)
m N puzzle experts at your disposition 419)
— individual mindsets, approaches, S| 3] 5] 9] |2
strerlmgths.& weaknessgs | OO 96 3 3 g U0
— anti-social: work best if left undisturbed 7 6/8
How do we employ and “orchestrate” our experts? 28
OO Q)

11/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Approach lI: Pure Portfolio

G- G- 68
713 713 713
OO e a2 OO 70 a7 OO mie 412
S BB 2 S B BLOL 2 S B BLIOL 2
36 316 36
o6 318 o6 38 o6 38
HEEGE ARG ARG
218 218 218
73689 73689
OO 70 a5 O 70 e
S BB 2 S BB o[2
36 36
o6 318 o6 318
7L 1Bl 7L 1Bl
218 218
73689 73689 73689
O Rt 1 T 5 12 T 5 12
1ie] 1 419
3B 2 3 BLIOL 2 S BLBLOL 2
36 36 36
o6 3R o6 3R o6 3R
HEEGE HEEGE HEEGE
28 218 218

12/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Approach lI: Pure Portfolio

S} S} S}
731 [0 71 [0 7B 9
C)(:)ggg REEE CDT:)ggg 18 CDT:)ggg an
83151912 8 351912 81 3B 1912
36| [[3]6] [[3]6
ol6 318 ol6 318 oG 318
WEEGE WEEGE EIMGE!
28 G 28 P
(e 73D
I g5 I
8 351912 8 3151912
36 316
ol6 318 ol6 318
7 1BI8 73 1BR 1[0
o8 o8 6
S AEI MR
I o6 19
351912 31560 12 8 3151912
316 316 316
ol6 318 ol6 318 ol6 318
e GEN NG 7L 1618
DI} o8 o8

12/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Pure Portfolio

Approach i

oM [NfkOeo o IeNkOeo
00 [<H) 00 [o)

O ON<tien O I IO 1N

o) o)

I LO) 00 ~O DO 00

<t KO e
o) |0 00 Oy | 00
O o O N
c<too] [OMb] OO [Oab
S RHENER
00 [NS
O NIl ap
o)
N~ L) 00
e
Oy | 00
e apq\]

G JNkIo0) eFeo] (o AN O]
00 [<H o) OISO
O I IO KOANIN~ooloy=rlehol—

ap AN~ OICOLOIA=H

| LO) 00 <t~k NLOIS—|eofen
< LOjo|NM—I[OO
oY N Q0| ALDOHOIII~<H—[c0
Ol N D<ol oOkOMIN
O<t(o0] O] —[<Ol=HleoINIGI=hO
S RENE
00 [
< o) [
= L |
P~ L) 00)
e
NIl ap 00,
O [N

S NS0 <tioo] [oa] IS IS0
00 [o) Xe o0 [1O
e o) | O Oy |

o) o)

SO DO 00 D~ O 00

© e
@) N®/ap) 00 Oy [N 00
O] | o)) KON
o] o= N=Hod o=

AT

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

12/41

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

13/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance

13/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup [20]

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Tq(x)/ Tp(X)
where Q is the best available sequential algorithm.

13/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Pure Portfolio: Oracle view vs. Speedup view

Virtual Best Solver (VBS) / Oracle

Consider n algorithms Ay, ..., A, where for each input x, algorithm A; has run time Ty (x).
The Virtual Best Solver (VBS) for Ay, ..., Ay has runtime T*(x) = min{ T, (X),..., Ta,(X)}.

Optimist: A pure portfolio simulates the VBS using parallel processing!
m On idealized hardware, we “select” best sequential solver for each instance

Parallel speedup [20]

Given parallel algorithm P and input x, the speedup of P is defined as sp(x) = Tq(x)/ Tp(X)
where Q is the best available sequential algorithm.

Pessimist: A pure portfolio never achieves actual speedups!
m There is always a sequential algorithm performing at least as well
m Consequence: Not resource efficient, not scalable

13/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Pure SAT Portfolios

ppfolio: Winner of Parallel Track in the 2011 SAT Competition [15]

m Just a bash script combining the best sequential solvers from 2010:
"$./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

m Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

14/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Pure SAT Portfolios

ppfolio: Winner of Parallel Track in the 2011 SAT Competition [15]

m Just a bash script combining the best sequential solvers from 2010:
"$./solverl f.cnf & ./solver2 f.cnf & ./solver3 f.cnf & ./solverd f.cnf

m Bits by O. Roussel, the author of ppfolio:
— “by definition the best solver on Earth”
— “probably the laziest and most stupid solver ever written”

m Rationale: Different solvers are designed differently, excel on different instances
— hope of orthogonal search behavior

m Pure portfolios no longer permitted in SAT Competitions

14/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Approach llI+: Cooperative Portfolio

G- G- 68
OO s e I\ 70 Odtd (OO mie O3
LB 93% LB 93% S BlAG 93%
o6 38 o6 318 o6 318
HEEGE ARG 713 1618
218 G 218 218
G- 7368
C D ot 2112 OO T
i) 35 e
LB 93% LB 93%
o6 318 o6 38
7L 1Bl TR BIRL] 19
28 218 G
7368g 73689 G 7368g
OO IS 5] OO 1o 16 a5 OO 3ol 16l 745!
i) ol6 419
3B 2 3A56OL 12 S BLBLOL 2
36 36 36
oG 3 o6 3R o6 3R
TR BIRL] 9 HEEGE T 168
S8 218 218

15/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Approach llI+: Cooperative Portfolio

OO OO OO
OO@OO
OO o OO

15/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Approach llI+: Cooperative Portfolio

15/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Approach llI+: Cooperative Portfolio

G- G- 68
OO s G OO e Odtd (OO me O3
S B 93% S B 93% S BlAG 93%
o6 38 o6 318 o6 318
HEEGE HEEGE 713 1618
218 G 218 218
G- 7368
C D ot 2112 OO [T
i) 35 e
S B 93% S B 93%
o6 318 o6 38
HERGE TR BIRL] 19
28 218 G
7368g 73689 G 7368g
OO 10 5] OO 1o 16 a5 OO 3ol 16l 745!
i) ol6 419
3L 3A56OL 12 S BIBLOL 2
36 36 36
oG 3 o6 3 o6 3R
TR BIRL] 9 HEEGE T L68
S8 218 218

15/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving:

16/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
m Explored branch of search space — safe to prune
m Potential step for deriving unsatisfiability
m Result: Parallel search space pruning procedure

16/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Cooperative Portfolio

Assembly of Nerds, enhanced

m The experts periodically gather for brief standup meetings
m Via some protocol, the experts exchange the most valuable insights gained since the last meeting
m Solving continues — each expert may use the shared insights at their own discretion

Equivalent to “insights” in SAT solving: learnt (conflict) clauses
m Explored branch of search space — safe to prune
m Potential step for deriving unsatisfiability
m Result: Parallel search space pruning procedure

Combination of portfolio idea + clause exchanges: Clause sharing portfolio solvers

16/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Sharing Portfolios: Desigh Space

Portfolio considerations
m Which sequential solvers to employ?

m How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Cadical::diversify(seed) {
solver->set(name: "seed", val: seed);
switch (getDiversificationIndex % getNumOriginalDiversifications()) {
: okay solver->set(name: "phase ; break;
1: okay = solver->configure("'
: okay = solver->set(name: "elim", val: 0); break;

: okay = solver->configure("unsat"); break;
1: okay = solver->set(name: "condition", wval: 1); break;
: okay = solver->set(name: "v (", wval: 0); break;
: okay = solver->set(name: rtint", wval: 100); break;
: okay = solver->set(name: " r", val: 1); break;
: okay = solver->set(name: ": Le", wval: 1) && solver->set(name: '
: okay solver->set(name: ocessing", wval: 0); break;

17/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Clause Sharing Portfolios: Desigh Space

Portfolio considerations
m Which sequential solvers to employ?

m How to diversify solvers?
— different search algorithms, selection heuristics, restart intervals, ...
— different random seeds, initial phases, input permutations, ...

Clause exchange considerations
m How often to share? (immediate/eager? delayed/lazy? periodic?)
m How many clauses to share? (fixed volume? fixed quality criteria?)
m Which clauses to share? (shortest? lowest LBD?)
m How to implement sharing? (all-to-all? leader-worker? some communication graph?)

17/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009) [11]

m Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, ...

m Eager exchange of clauses of length < 8 via lockless queues

18/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Early Clause Sharing Portfolios

ManySAT (Hamadi, Jabbour, and Sais 2009) [11]

m Hand-crafted diversification of four solver configurations
— Restart policy, variable + polarity selection heuristic, ...

m Eager exchange of clauses of length < 8 via lockless queues

Plingeling (Biere 2010) [3]

m Portfolio over Lingeling configurations (shared-memory parallelism)

m Lazy exchange of information over “boss thread”
— 2010: Unit clauses only
— 2011: Unit clauses + equivalences
— Since 2013: Unit clauses + equivalences + clauses of length < 40, LBD < 8

m Best parallel solver for many years

18/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines 7
(with no shared main memory) run together. {10
On each machine we run a number of processes, :
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages. -
SuperMUC-NG: 6 336 nodes x 48 cores

19/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines
(with no shared main memory) run together.

On each machine we run a number of processes,
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages. *
SuperMUC-NG: 6 336 nodes x 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
m No shared memory — communication protocols required

m Diminishing returns due to exhausted diversification of solvers

19/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Massively parallel hardware?

Distributed computing, High-Performance Computing (HPC)

In distributed computing, several machines
(with no shared main memory) run together.

On each machine we run a number of processes,
each of which runs on a number of cores.

Processes commonly communicate by exchanging messages.
SuperMUC-NG: 6 336 nodes x 48 cores

Large distributed systems (hundreds to thousands of cores) impose new requirements, challenges:
m No shared memory — communication protocols required

m Diminishing returns due to exhausted diversification of solvers

m Some exchange schemes are conceptually not scalable [7]

m “Star graph”: Master process collects, serves all exported clauses
m Naive (quadratic) all-to-all exchange of clauses

m HPC schedulers, administrators, committees are used to regular,
easily parallelizable code with near-linear scaling

19/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015) [1]

m Decentralization: No single leader node / process

m Two-level (“hybrid”) parallelization
— One or several processes on each machine
— Multiple solver threads (+ communication thread) on each process

20/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Massively parallel SAT portfolio

HordeSat (Balyo, Sanders, Sinz 2015) [1]

m Decentralization: No single leader node / process

m Two-level (“hybrid”) parallelization

— One or several processes on each machine

— Multiple solver threads (+ communication thread) on each process
m Diversification options:

— Native diversification (set of hand-crafted solver configurations)

— Modifying some initial variable phases

— Random seeds

m Periodic all-to-all clause exchange

20/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in HordeSat

HordeSat’s sharing logic

m Only clauses with LBD < 2 are considered for sharing
m Constraint is lifted successively if processes under-produce

m Solver threads write eligible clauses into shared buffer

21/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in HordeSat

HordeSat’s sharing logic PEs () @ @, Q O
| b il [
L

[a]

m Only clauses with LBD < 2 are considered for sharing Exported |?|
m Constraint is lifted successively if processes under-produce clause |¢

d

m Solver threads write eligible clauses into shared buffer buffers

m Each process’ best clauses are shared with everyone

m Limited to 1500 clause literals per process
= Concatenation of p produced clause buffers W
m Approximate, post-hoc filtering of clauses

AllGather

AN
OIOX XOX XX

Import clauses to solvers

21/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Exchange in HordeSat

HordeSat’s sharing logic PEs @ @ O Q O
d i b — c
m Only clauses with LBD < 2 are considered for sharing Exported |b Il T
m Constraint is lifted successively if processes under-produce clause |¢ - p
m Solver threads write eligible clauses into shared buffer buffers B f ||
m Each process’ best clauses are shared with everyone L | L

m Limited to 1500 clause literals per process

= Concatenation of p produced clause buffers W

m Approximate, post-hoc filtering of clauses

Issues: AllGather

m Many (“high” LBD) clauses are not shared but discarded m

m “Holes” in buffer carrying no information

m Duplicate clauses O Q ‘ Q ‘ Q Q

m Buffer grows proportionally with # proc. Import clauses to solvers
= Bottleneck w.r.t. communication, local work

21/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?

22/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?

— SAT: “NP luck” — some solver got lucky

— UNSAT: distributed memory accommodates
more clauses than any sequential solver

— General: sequential schedule of parallel algorithm
may outperform sequential algorithm!

22/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

HordeSat: Results

m Super-linear speedups for individual instances
= speedup > con c cores! How?

— SAT: “NP luck” — some solver got lucky

— UNSAT: distributed memory accommodates
more clauses than any sequential solver

— General: sequential schedule of parallel algorithm
may outperform sequential algorithm!

m Median speedup: 3 at 16 cores, 11.5 at 512 cores
— Efficiency: 11.5/512 ~ 2.2%
— Deploying HordeSat is often not worth it

m No improvement beyond ~ 500 cores

22/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

- Lingeling

2048c.
512c.
128c.
32c.

i e — et
v T
24004 =7

AN
IS /S
- i':l' -
wn -/‘
S 20041
% if .~
R
2 /
o p—] Ir
h 0 T T T

0 250 500 750

Run time ¢ (s)

Data extracted from HordeSat paper [1]

AT

From HordeSat to MallobSat

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

23/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://satres.kikit.kit.edu/research/mallob

From HordeSat to MallobSat

Research Question

How can we improve performance, (resource-)efficiency, and average response times
of SAT solving in modern distributed environments?

Result: Mallob

Mallob is a platform for SAT solving (and other NP-hard problems) with:
m multi-user, on-demand, malleable scheduling and solving of many problems at once [19]
m distributed SAT engine MallobSat: the HordeSat paradigm re-engineered and made efficient [24]
m state-of-the-art SAT performance from dozens to thousands of cores [23]

| I } Q l() https://satres.kikit.kit.edu/research/mallob

schedule - balance - solve - prove

23/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://satres.kikit.kit.edu/research/mallob

Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

24/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

> Sharing buffer

| - r A) | = L:

| ot v Fiter IR

I mport L !

| buffers : —— 1,
=0 =) D T
| So S1 Sc1 t @ |

| |

| | | Select, filter | | I v

I ' ' ' | 10
| Export buffer | | @

\J

\/

[Collective sharing operation)

AT

Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

24/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Sharing buffer

Filter

J

Import
buffers

J

50 51 5c -1
| | Select, filter |
' . '
Export buffer

vy

[Collective sharing operation)

AT

Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering

24/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

> Sharing buffer
S— —
| |
| - r N | e |
| 1 mport [Filter v ENIRINNIE
| |
| buffers : —— 1,
| | 0 - 0 T
) =) D |messar
| | |
i So S Sc-1 | | Ju. :
| |
| | | Select, filter | | I L
| | —— |
| ' ! ' . 0.0
| Export buffer | | @
| Selective export i | 'j ————— '
e |
Yy

[Collective sharing operation)

AT

Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering

m Minimize clause turnaround times

24/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

> Sharing buffer
S— —
| |
| - r N | e |
| 1 mport [Filter v ENIRINNIE
| |
| buffers : —— 1,
| | 0 - 0 T
) =) D |messar
| | |
i So S Sc-1 | | Ju. :
| |
| | | Select, filter | | I L
| | —— |
| ' ! ' . 0.0
| Export buffer | | @
| Selective export i | 'j ————— '
e |
Yy

[Collective sharing operation)

AT

Design Decisions of MallobSat [23]

m Fundament: HORDESAT
— Two-level hybrid parallelization
— Periodic all-to-all clause sharing

m Fix a certain sharing volume, spend it on
the globally most useful distinct clauses

m Prioritize clauses by clause length over LBD
— At all stages! Also in export / import buffering

m Minimize clause turnaround times
m Support fluctuating workers (malleability)

24/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

> Sharing buffer
R e——
| |
| ' (R) e :
| 1 mport [Filter v ENIRINSIE
| |
| buffers : —— 1,
| | 0 - 0 T
) =) D |messar
| | |
i So S Sc-1 | | Ju. :
| |
| | | Select, filter | S L
| | —— |
| ' ' ' . 0.0
| Export buffer | | @
| Selective export i | 'j ————— '
e |
Yy

[Collective sharing operation)

AT

Clause Exchange in Mallob [23]

Custom collective operation 1.

m Aggregate information along Qa bjc| d
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape (E Q f 9

m Sublinear buffer size growth:

Discard longest clauses as necessary Q
oo) Qeerman Oieran Qm

25/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in Mallob [23]

Custom collective operation 1.

m Aggregate information along Qa bjc| d
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

"QE Sorted aggregation
(space-limited, sublinear)

25/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c|b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

N | .
"ya Sorted aggregation
(space-limited, sublinear)

25/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c|b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

N | .
"ya Sorted aggregation
(space-limited, sublinear)

2. Broadcast alilelffc[b] d | f g

25/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Exchange in Mallob [23]

Custom collective operation 1. ailefa[c]b| d | f g

m Aggregate information along
binary tree of processors

m Detect duplicates during merge
m Result is of compact shape

m Sublinear buffer size growth:
Discard longest clauses as necessary

m Clause needs to meet global quality threshold 2. Broadcast alilefife[b| d [f g
to be shared successfully

m Quality threshold adapts to state of solving

N | .
"ya Sorted aggregation
(space-limited, sublinear)

25/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Filtering

The Problem

Given a shared clause ¢ and a solver S, decide if
S has received or produced c before (recently).

Previously: [1, 24]
m Bloom filters: fixed size, risk of false positives

26/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Filtering

The Problem

Given a shared clause ¢ and a solver S, decide if
S has received or produced c before (recently).

Previously: [1, 24]
m Bloom filters: fixed size, risk of false positives
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself
and tags their producing solver(s)

26/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Filtering

The Problem 3.

Given a shared clause ¢ and a solver S, decide if |
S has received or produced ¢ before (recently). T

[Tle[h]c]o]
Previously: [1, 24] Aggregation: i
m Bloom filters: fixed size, risk of false positives Bitwise “OR”
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself 1]
and tags their producing solver(s)

m Aggregate bit vector v where 4
v[i] ==V, (p remembers c;)

m Only import clauses c¢; for which v[i] = false

Broadcast Global filter vector

o [

26/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Filtering

The Problem 3.

Given a shared clause ¢ and a solver S, decide if |
S has received or produced ¢ before (recently). T

[Tle[h]c]o]
Previously: [1, 24] Aggregation: i
m Bloom filters: fixed size, risk of false positives Bitwise “OR”
Mallob’22+: Exact distributed filter [23]

m Process p remembers clauses it exported itself 1]
and tags their producing solver(s)

m Aggregate bit vector v where 4
v[i] ==V, (p remembers c;)

m Only import clauses c¢; for which v[i] = false

m Use producer data to prevent mirroring clauses
back to their producer(s)

Broadcast Global filter vector

o [

26/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses

27/41

— Export limit
-»- Actual incoming
Actual admitted

— Target

25000 -
20000 -
[%2]
© 15000 -
2
=] XX *
* 10000 xx*%%*x VR IRVINEVEVE 50
1
1
5000 1/
'l
I
0+ l l ' '
10 15 20

Sharing operations

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses
Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2., 3.)

27/41

— Export limit
-»- Actual incoming
Actual admitted

— Target

25000 -
20000 -
[%2]
© 15000 -
2
=] XX *
* 10000 xx*%%*x VR IRVINEVEVE 50
1
1
5000 1/
'l
I
0 - I I I I
10 15 20

Sharing operations

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Enforcing a Sharing Volume [23]

We want to share L literals per sharing but may only get L’ < L successfully shared literals. Why?

1. Processes didn’t produce, export enough clauses
2. Duplicate clauses were detected and eliminated during aggregation

3. Distributed filter blocked some of the transmitted clauses
Fix: Elastic compensation for sharing volume unused for algorithmic reasons (2., 3.)

25000 A
20000 - & 2 — Export limit
" & o W8T B -~ Actual incoming
® - \
© 150009 [/ «%VaooRe' [\ g NH URR Actual admitted
) ! 6 ’ & x’ R , ,
= ! ¥ 2 @+ Est. incoming
- 1
% 100001 & Est. admitted
! —— Target
5000 1/
'l
U
0 -+ T T T T
0 5 10 15 20

Sharing operations

AT

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

27/41

Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

28/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses

28/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses

Possible approach: Increment each LBD before import [23]
m Maintains LBD-based prioritization of clauses
m Solver keeps more control over its LBD-2-clauses

28/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

LBD

LBD'

Median RAM PAR-2

Orig. LBD 108.8GiB 75.7
Reset LBD 95.6GIB 74.3
LBD++ 97.3GiB 72.9

768 cores x 349 instances x 300s

AT

Handling LBD Values

m Seq. solving: central metric for whether to keep a clause

m But: LBD found by solver A not necessarily meaningful
for solver B! — not as “global” as clause length

m Some solvers keep clauses with LBD 2 indefinitely
— but expect a single solver’s clause volume!
= Growing overhead (time, space) from low-LBD clauses

Possible approach: Increment each LBD before import [23]
m Maintains LBD-based prioritization of clauses
m Solver keeps more control over its LBD-2-clauses

But: Dropping LBD values alltogether performs just as well
in latest experiments [22]

28/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

LBD

LBD'

Median RAM PAR-2

Orig. LBD 108.8GiB 75.7
Reset LBD 95.6GIB 74.3
LBD++ 97.3GiB 72.9

768 cores x 349 instances x 300s

AT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ?

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!
m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!
m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative

m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

29/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver

29/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,EI s(f)) — Meaningful, conservative, only for running times > 0
m Total S;,; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver
m “Generously” assume as solved in time T, or apply penalty k- T — makes speedups difficult to interpret

29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Parallel Solver Evaluation Methodology

Benchmark “best” sequential solver (e.g., SAT Competition winner) and parallel solver
on recent competition instances, with a fixed time limit T per instance.

Speedup for a single instance i is (/) := Tseq(/)/ Tpar(f). How do we compute overall speedups over inputs Z?

m Arithmetic mean Sae = 1/|Z| - > ;7 8(1) ? No statistical meaning!

m Median S,,o4: central item in sorted list of speedups — Meaningful, very conservative
m Geometric mean Sy, = I\V(H,-Ez s(f)) — Meaningful, conservative, only for running times > 0
m Total S;; = % — Meaningful (“ratio of time saved”), emphasizes difficult inputs

How do we handle instances with Tseq = TIMEOUT?

m Reduce such occurrences by running sequential solver (much) longer than parallel solver

m “Generously” assume as solved in time T, or apply penalty k- T — makes speedups difficult to interpret
m Omit from speedup calculation — clean separation of speedups from # solved instances
29/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Scaling of MallobSat [

]

-<-- MALLOBSAT (KCL) 0
401 —=- HORDESAT (L)
c &
(4] JRe
£ v
E‘ 30 T ///
3 /
2 4
% 20 . A/’/
O 7 ~
()] ,/ E_/
) & .-
& 10 - - —

¢ /-E"/'/EI/
o-— 8
O I I

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

30/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Scaling of MallobSat [23]

() W B
o o o
1 1 1

Speedup (geom. mean)

—
o
1

-<-- MALLOBSAT (KCL) (3,27)
—B-- HORDESAT (L) (331}
(# solved) P
hd
/,'«/
// 2
/,&y /{ 299)
A -
2§7)———9’ .,EI/'/

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

30/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Scaling of MallobSat [23]

7
-<-- MALLOBSAT (KCL) (3,2)
404 —B5- HORDESAT (L) (331}
3 (# solved) e
S o’
E‘ 30] ///
3 /
2 1
g 207 e (299)
O 7 ~
o PR g
Q /0’ /'/
Q. .- A=
»n 10 - (2§Z),,—Q’ e
(152-)_-_3/‘,-5—-
O I I

24

48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

Weak Scaling

800

700 - g4 -
600 - L
500 A =
400 - pd
< 300 - s Casr "
2 200 A
100 {57277 ym—

Y H“Z-nf‘\‘

on tasks with Teeq > x
ﬁ
I
I
I

- 768 cores

- 48 cores

3072 cores
1536 cores

384 cores
192 cores

96 cores

24 cores

Speedu

O {‘;M‘-V I I I I
0 1800 3600 5400 7200

Bound x for running time T, of seq. solver [s]

AT

Merit of Clause Sharing, SAT vs. UNSAT

= 150 -
VI vi 150 -
g= g=
go go
O O
2 - 100 -
3 3
g g
= 90 . = 501 .
= — Sharing (SAT) b= Sharing (UNSAT)
2~ I P No sharing (SAT) = No sharing (UNSAT)
:H: 0 * 0
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]

AT

Merit of Diverse Portfolio, SAT vs. UNSAT

< 150 - =
V| v 150 7
= =
S S
2 = 100 +
3 %
I | g
= 50 = 50 -
= : —— KCLG (SAT) = KCLG (UNSAT)
S L (SAT) E L (UNSAT)
T 0 = 0
0 100 200 300 0 100 200 300
Run time ¢ [s] Run time ¢ [s]

AT

Diversification vs. Sharing @ 768 Cores [23]

300 A

| 250 A m Without clause sharing, diversification is highly effective

» o
.

Y
e

200 - P

150 -

1004

instances solved in < ts

-------- +div —share
—div —share

o)
o
1

O I I I I
0 60 120 180 240 300
Running time ¢ [s]

33/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Diversification vs. Sharing @ 768 Cores |

300 +

| 250 -
]

2001 /

150 -

instances solved in < ts

!

1

|
|

100 7 ;

-
I
I
L

o
-~
d--"'—
-
o ———
—— -

u s
.

Y
e

---- +div +share
-------- +div —share
—div —share

)
o o
O +——

60

120 180 240 300
Running time ¢ [s]

]

m Without clause sharing, diversification is highly effective

m With sharing:

33/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Diversification vs. Sharing @ 768 Cores [23]

300 - A —

V| 250 -

s | S

8 200 - l;

= T T L

(@) ,'

» 150 !

O I

O l

S 100 4 ¢

» i ---- +div +share

£ n —div +share

OO0 e +div —share
1’ —div —share

O | 1 1 1 1

0 60 120 180 240 300

Running time ¢ [s]

349 problems from SAT Comp. 2022 - CaDiCaL only

33/41

m Without clause sharing, diversification is highly effective

m With sharing: 768x the same program performs well?!

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Diversification vs. Sharing @ 768 Cores [23]

300 - A —

V| 250 -

s | S

8 200 - l;

= T T L

(@) ,'

» 150 !

O I

O l

S 100 /;

» i ---- +div +share

£ n —div +share

OO0 e +div —share
1’ —div —share

O | 1 1 1 1

0 60 120 180 240 300

Running time ¢ [s]

349 problems from SAT Comp. 2022 - CaDiCaL only

33/41

m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!

=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!

AT

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]

instances solved in < ts

33/41

300 A

250 -

200 -

150 -

100 A

— S Sy
PE—
s
—

———
——
——

ant®

---= +div +share
—div +share
-------- +div —share
—div —share

60

120 180 240 300
Running time ¢ [s]

349 problems from SAT Comp. 2022 - CaDiCaL only

m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!
=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!
m Similar findings @ 3072 cores

m Default CADICAL with primitive diversification

(seeds, phases) performs competitively
m Fully diversified portfolio without clause sharing does not

AT

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Diversification vs. Sharing @ 768 Cores [23]

instances solved in < ts

33/41

300 A

250 -

200 -

150 -

100 A

—
o
-
e e

—_——
-
——

ant®

---= +div +share
—div +share
-------- +div —share
—div —share

60

120 180 240 300
Running time ¢ [s]

349 problems from SAT Comp. 2022 - CaDiCaL only

m Without clause sharing, diversification is highly effective
m With sharing: 768x the same program performs well?!
=- Clause imports deviate due to parallel execution
= “Butterfly effect” — effective sharing!
m Similar findings @ 3072 cores

m Default CADICAL with primitive diversification

(seeds, phases) performs competitively
m Fully diversified portfolio without clause sharing does not

= Portfolio of diverse configurations is dispensable
= Clause sharing is essential

AT

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

MallobSat: A Portfolio Solver?

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

m “a problem instance is independently given to a collection of solvers competing for a solution in parallel”’
— Fichte et al., 2023 [9]

m “each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing leads to
surprisingly good performance for small portfolio sizes” — Ozdemir et al., 2021 [17]

34/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

MallobSat: A Portfolio Solver?

Prevalent concept in literature: Portfolio solver with clause sharing / Clause-sharing portfolio

m “a problem instance is independently given to a collection of solvers competing for a solution in parallel”’
— Fichte et al., 2023 [9]

m “each thread runs a different SAT solver on the same instance[, which] in combination with clause-sharing leads to
surprisingly good performance for small portfolio sizes” — Ozdemir et al., 2021 [17]

Our view, based on empirical observations:

MALLOBSAT is a Clause-sharing solver with diversification
m Clause sharing = main driver of scalability
m Adding explicit diversification is beneficial but not essential
m Applicability to other solvers?

34/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Better Efficiency?

Massive parallelism for a single formula
m Faster solving times
m Can resolve problems out of reach for sequential solvers
m Not that resource efficient (on average)

35/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Better Efficiency?

Massive parallelism for a single formula

m Faster solving times
m Can resolve problems out of reach for sequential solvers

m Not that resource efficient (on average)

Solving many formulas in parallel
m Embarrassingly parallel
m Solving itself less powerful

35/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Better Efficiency?

Massive parallelism for a single formula

m Faster solving times
m Can resolve problems out of reach for sequential solvers

m Not that resource efficient (on average)

Solving many formulas in parallel
m Embarrassingly parallel
m Solving itself less powerful

Best of both worlds? [19]
m On demand scheduling of incoming (SAT) jobs
m Resize jobs during their execution as needed

m Few milliseconds to schedule an incoming job,
full utilization whenever sufficient demand is present

35/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Scheduling Many SAT Tasks [23]

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

36/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Scheduling Many SAT Tasks |

Problem statement
Given x € {400, 1600,6400} cores and 400 SAT tasks,

solve as many tasks as possible.

Extreme 1: 400 sequential solvers
m “Embarrassingly parallel” job processing

m Highly efficient (no redundant work)
m Sequential solving only — no scaling opportunity

36/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

]

350 A

300 -

finished jobs

100 -

— N N
o) o o)
o o o

I I I

-
—f————__
-
-
-
e

---- 400xKISSAT

30 60 90
Total running time [min]

120

AT

Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Extreme 2: “Monolithic” parallel solving

m One job at a time
m Generous assumption: instances sorted by run time

m Maximizes per-instance speedups
m No task parallelism, poor efficiency

36/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

350 A
300 - [
" 250 - ’,r"’
o S
©, s
O 200 - JJ
@ I
5 R
= 150 1/
y— L
+H H
100 s
! ---- 400xKISSAT
504 0 v Mono 1536 c.
‘ Mono 384 c.
O | | |
0 30 60 90 120

Total running time [min]

AT

Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Middle ground 1: Divide cores evenly among jobs
m Solid speedups at small-scale parallel SAT
m After 15 min, > 50% of cores are idling

36/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

finished jobs

350 -
300 - RIS
2504/ / /r‘::‘fu
/I
17
200 - :"/
I -
Iy
150 i+ -
1 4x1600 Rigid
100 ---- 4x400 Rigid
---= 400xKISSAT
50+ U Mono 1536 c.
Mono 384 c.
0 1 | T I
0 30 60 90 120
Total running time [min]
AT

Scheduling Many SAT Tasks |

Problem statement

Given x € {400, 1600,6400} cores and 400 SAT tasks,
solve as many tasks as possible.

Middle ground 2: Divide cores dynamically among jobs
m Finishing jobs yield resources to remaining jobs

finished jobs

350 A

300 -

— N N
o) o o)
o o o
1 I I

100

50

=
"""
. s

—
——— s
—— “

[——
54 -

---- 4x400 Rigid
—— 1x400 Flex
---- 400xKISSAT
Mono 1536 c.
Mono 384 c.

f———""_

4x1600 Rigid

-

30 60 90
Total running time [min]

120

AT

Scheduling Many SAT Tasks [23]

350 A

Problem statement

Given x € {400, 1600, 6400} cores and 400 SAT tasks, 300 1
solve as many tasks as possible.

. 250 - ‘
g
= 4x1600 Flex
2001/ / - L
§ 4% 1600 Rigid
0 A — 4x400 Flex
2 150 /. e
Middle ground 2: Divide cores dynamically among jobs = ' ---- 4x400 Rigid

m Finishing jobs yield resources to remaining jobs 100 —— 1x400 Flex

m Record number of solved instances -=-- iﬂooonzﬁlgggz
' latively littl 504 0 ¢ i
using relatively little resources ono 1536

0 I I I 1
0 30 60 90 120

Total running time [min]

36/41 June 16,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

37/41

Preprocessing

/\

/\

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

A O AN I AN

_____ q-----4-----7 Preprocessing

[IV |C AN I AN

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL
m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

37/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

A O AN I AN

_____ q-----4-----7 Preprocessing

[IV |C AN I AN

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL
m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]

37/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

A O AN TAL A A

_____ q-----4-----7 Preprocessing

[IV |C AN TAL A A

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]

m Uses of GPUs 77 (Stochastic Local Search [6], Inprocessing offloading [16], .. .)

37/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Current Frontiers

m Streamlined clause-sharing solver design, away from portfolios [22]

A O AN TAL A A

_____ q-----4-----7 Preprocessing

[IV |C AN TAL A A

Clause sharing portfolio with “language barriers” vs. streamlined parallel CDCL

m Address high main memory requirements, especially for huge formulas (cf. [10])
m Preprocessing and Inprocessing in parallel SAT solving (cf. [16])

m Applying technology to related tools, applications
— Verification (Bounded Model Checking, SMT Solving)
— Optimization (MaxSAT Solving)
— Crucial piece of technology: Distributed incremental SAT solving! [21]

m Uses of GPUs 77 (Stochastic Local Search [6], Inprocessing offloading [16], .. .)
m Proofs of unsatisfiability (next lecture!)

37/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Recap

Parallel SAT Solving

m Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

m All-to-all clause sharing can be very useful and scalable (up and down) if implemented well
— diversifies solvers effectively in and of itself

m Exploit embarrassingly parallel job processing for interactive solving & best efficiency

m Proof pragmatics: Formats for different proof systems in the wild
m Bringing proof technology to parallel and distributed SAT solving

38/41 June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

References|

[1]

[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]
[10]

39/41

Tomas Balyo, Peter Sanders und Carsten Sinz. ,Hordesat: A massively parallel portfolio SAT solver®. In: Theory and Applications of Satisfiability Testing (SAT).
Springer. 2015, S. 156—172. bOI: 10.1007/978-3-319-24318-4_12.

Armin Biere. ,Lingeling, Plingeling and Treengeling entering the SAT competition 2013, In: SAT Competition. Bd. 2013. 2013, S. 1.
Armin Biere. ,Lingeling, Plingeling, Picosat and Precosat at SAT race 2010%. In: SAT Competition. 2010.

Wolfgang Blochinger, Carsten Sinz und Wolfgang Kdchlin. ,Parallel propositional satisfiability checking with distributed dynamic learning®. In: Parallel Computing 29.7
(2003), S. 969-994. DOI: 10.1016/50167-8191(03)00068- 1.

Max Béhm und Ewald Speckenmeyer. ,A fast parallel SAT-solver — Efficient workload balancing®. In: Annals of Mathematics and Artificial Intelligence 17 (1996),
S. 381-400. DOI: 10.1607/bf02127976.

Yunuo Cen, Zhiwei Zhang und Xuanyao Fong. ,Massively parallel continuous local search for hybrid SAT solving on GPUs". In: AAAI Conference. Bd. 39. 11. 2025,
S.11140-11149. pOI: 10.1609/aaai.v39i11.33211.

Thorsten Ehlers, Dirk Nowotka und Philipp Sieweck. ,Communication in massively-parallel SAT solving®“. In: Int. Conf. on Tools with Artificial Intelligence (ICTAI). IEEE.
2014, S. 709-716. DOI: 10.1109/ictai.2014.111.

Yulik Feldman, Nachum Dershowitz und Ziyad Hanna. ,Parallel multithreaded satisfiability solver: Design and implementation®. In: Electronic Notes in Theoretical
Computer Science 128.3 (2005), S. 75-90. DOI: 10.1016/j .entcs.2004.10.020.

Johannes K. Fichte u. a. ,The Silent (R)evolution of SAT". In: Comm. ACM 66.6 (2023), S. 64—72. DOI: 10.1145/3560469.

Mathias Fleury und Armin Biere. ,Scalable Proof Producing Multi-Threaded SAT Solving with Gimsatul through Sharing instead of Copying Clauses®. In: Pragmatics
of SAT. arxiv.org/pdf/2207.13577.pdf. 2022.

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://doi.org/10.1007/978-3-319-24318-4_12
https://doi.org/10.1016/s0167-8191(03)00068-1
https://doi.org/10.1007/bf02127976
https://doi.org/10.1609/aaai.v39i11.33211
https://doi.org/10.1109/ictai.2014.111
https://doi.org/10.1016/j.entcs.2004.10.020
https://doi.org/10.1145/3560469
arxiv.org/pdf/2207.13577.pdf

References ||

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

40/41

Youssef Hamadi, Said Jabbour und Lakhdar Sais. ,ManySAT: a parallel SAT solver*. In: Journal on Satisfiability, Boolean Modeling and Computation 6.4 (2010),
S. 245-262. DOI: 10.3233/5at190070.

Marijn J. H. Heule. ,Schur number five®“. In: AAAI Conference on Artificial Intelligence. Bd. 32. 1. 2018. DOI: 10.1609/aaai.v3211.12209.

Marijn J. H. Heule, Oliver Kullmann und Victor Marek. ,Solving and verifying the boolean pythagorean triples problem via cube-and-conquer®. In: Proc. Theory and
Applications of Satisfiability Testing (SAT). Springer. 2016, S. 228—-245. DOI: 10.1007/978-3-319-40970-2_15.

Marijn J. H. Heule u. a. ,Cube and conquer: Guiding CDCL SAT solvers by lookaheads®. In: Proc. Haifa Verification Conference. Springer. 2011, S. 50-65. DOI:
10.1007/978-3-642-34188-5_8.

Bernard Jurkowiak, Chu Min Li und Gil Utard. ,Parallelizing Satz using dynamic workload balancing®. In: Electronic Notes in Discrete Mathematics 9 (2001),
S. 174-189. DOI: 10.1016/51571-0653(04)00321-x.

Muhammad Osama, Anton Wijs und Armin Biere. ,Certified SAT solving with GPU accelerated inprocessing®. In: Formal Methods in System Design (2023), S. 1-40.
DOI: 10.1007/5s10703-023-00432-z.

Alex Ozdemir, Haoze Wu und Clark Barrett. ,SAT Solving in the Serverless Cloud*. In: Formal Methods in Computer-Aided Design (FMCAD). |IEEE. 2021, S. 241-245.
DOI: 10.34727/2021/1isbn.978-3-85448-046-4_33.

Olivier Roussel. ,Description of ppfolio (2011)". In: Proc. SAT Challenge. 2012, S. 46.

Peter Sanders und Dominik Schreiber. ,Decentralized online scheduling of malleable NP-hard jobs®. In: Parallel Processing (Euro-Par). 2022, S. 119-135. DOI:
10.1007/978-3-031-12597-3_8.

Peter Sanders u. a. Sequential and Parallel Algorithms and Data Structures. Springer, 2019. DOI: 10.1007/978-3-030-25209-0.

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://doi.org/10.3233/sat190070
https://doi.org/10.1609/aaai.v32i1.12209
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-642-34188-5_8
https://doi.org/10.1016/s1571-0653(04)00321-x
https://doi.org/10.1007/s10703-023-00432-z
https://doi.org/10.34727/2021/isbn.978-3-85448-046-4_33
https://doi.org/10.1007/978-3-031-12597-3_8
https://doi.org/10.1007/978-3-030-25209-0

References Il

[21]

[22]

[23]

[24]

[25]

[26]

41/41

Dominik Schreiber. Distributed Incremental SAT Solving with Mallob: Report and Case Study with Hierarchical Planning. 2025. arXiv: 2505.18836 [cs.DC]. URL:
https://arxiv.org/abs/2505.18836.

Dominik Schreiber, Niccolo Rigi-Luperti und Armin Biere. ,Streamlining Distributed SAT Solver Design®. In: Theory and Applications of Satisfiability Testing (SAT).
2025. DOI: 10.4230/LIPIcs.SAT.2025.23.

Dominik Schreiber und Peter Sanders. ,MallobSat: Scalable SAT Solving by Clause Sharing®. In: Journal of Artificial Intelligence Research (JAIR) 80 (2024),
S. 1437-1495. DOI: 10.1613/jair.1.15827.

Dominik Schreiber und Peter Sanders. ,Scalable SAT Solving in the Cloud®. In: Theory and Applications of Satisfiability Testing (SAT). Springer. 2021, S. 518-534.
DOI: 10.1007/978-3-030-80223-3_35.

Sven Schulz und Wolfgang Blochinger. ,Cooperate and compete! A hybrid solving strategy for task-parallel SAT solving on peer-to-peer desktop grids®. In: Proc. Int.
Conf. HPC & Simulation. |IEEE. 2010, S. 314-323.

Hantao Zhang, Maria Paola Bonacina und Jieh Hsiang. ,PSATO: a distributed propositional prover and its application to quasigroup problems®. In: J. Symbolic
Computation 21.4-6 (1996), S. 543-560. DOI: 10.1006/jsco.1996.0030.

June 16, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://arxiv.org/abs/2505.18836
https://arxiv.org/abs/2505.18836
https://doi.org/10.4230/LIPIcs.SAT.2025.23
https://doi.org/10.1613/jair.1.15827
https://doi.org/10.1007/978-3-030-80223-3_35
https://doi.org/10.1006/jsco.1996.0030

	Literatur

