
Practical SAT Solving

Lecture 9 – Proof Pragmatics & Parallel Proof Technology
Markus Iser, Dominik Schreiber | June 30, 2025

Recap Lecture 8

Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio
Deep dive into Mallob system for scheduling & solving SAT tasks

Today: Proof Pragmatics & Parallel Proof Technology

Common state-of-the-art proof formats
Pragmatics of proof production and checking
Producing proofs with parallel + distributed solvers
Beyond proof files: on-the-fly checking

2/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Overview

Solver on unsatisfiable formula F produces sequence of clauses P := ⟨c1, c2, . . . , cn⟩ with cn = ∅
Goal: Justify for i = 1, . . . ,n that F |= ci , i.e., that ci follows from F
– actually (in practice): that (F ∪

⋃i−1
j=1 cj) |= ci

Clausal Proof P: Expression of P with all information needed to justify all steps

efficiently (?)

Approach 1: Basic Clausal Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P
Checking: Maintain clause database B initialized as B := F ;
for each ci , confirm that B |= ci and then B := B ∪ ci

How do we perform the confirmation step?

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proofs: Back To Basics

Solver on unsatisfiable formula F produces sequence of clauses P := ⟨c1, c2, . . . , cn⟩ with cn = ∅
Goal: Justify for i = 1, . . . ,n that F |= ci , i.e., that ci follows from F
– actually (in practice): that (F ∪

⋃i−1
j=1 cj) |= ci

Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

Approach 1: Basic Clausal Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P
Checking: Maintain clause database B initialized as B := F ;
for each ci , confirm that B |= ci and then B := B ∪ ci

How do we perform the confirmation step?

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proofs: Back To Basics

Solver on unsatisfiable formula F produces sequence of clauses P := ⟨c1, c2, . . . , cn⟩ with cn = ∅
Goal: Justify for i = 1, . . . ,n that F |= ci , i.e., that ci follows from F
– actually (in practice): that (F ∪

⋃i−1
j=1 cj) |= ci

Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

Approach 1: Basic Clausal Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P
Checking: Maintain clause database B initialized as B := F ;
for each ci , confirm that B |= ci and then B := B ∪ ci

How do we perform the confirmation step?

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proofs: Back To Basics

Solver on unsatisfiable formula F produces sequence of clauses P := ⟨c1, c2, . . . , cn⟩ with cn = ∅
Goal: Justify for i = 1, . . . ,n that F |= ci , i.e., that ci follows from F
– actually (in practice): that (F ∪

⋃i−1
j=1 cj) |= ci

Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

Approach 1: Basic Clausal Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P
Checking: Maintain clause database B initialized as B := F ;
for each ci , confirm that B |= ci and then B := B ∪ ci

How do we perform the confirmation step?

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proofs: Back To Basics

The RUP Property

Given a clause set C and a clause c, we say that c has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C ∪ {c}), where c := {¬l : l ∈ c}, produces the empty clause.

Is a clause c with RUP property w.r.t. a checker’s clause set B a sound addition to B?

– Yes: B ∧
∧

l∈c ¬l is unsatisfiable → No way to satisfy B without satisfying c → B |= c

What kinds of clauses have the RUP property?
Conflict clauses from CDCL
Clauses arising from many pre– and inprocessing techniques
(variable elimination, subsumption, vivification, . . .)
Actually, almost all clauses produced by out-of-the-box CADICAL

What kinds of clauses do not have the RUP property?
Extended Resolution steps
Propagation Redundancy (PR) clauses
. . .

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Efficient Redundancy Checking [17]

The RUP Property

Given a clause set C and a clause c, we say that c has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C ∪ {c}), where c := {¬l : l ∈ c}, produces the empty clause.

Is a clause c with RUP property w.r.t. a checker’s clause set B a sound addition to B?
– Yes: B ∧

∧
l∈c ¬l is unsatisfiable → No way to satisfy B without satisfying c → B |= c

What kinds of clauses have the RUP property?
Conflict clauses from CDCL
Clauses arising from many pre– and inprocessing techniques
(variable elimination, subsumption, vivification, . . .)
Actually, almost all clauses produced by out-of-the-box CADICAL

What kinds of clauses do not have the RUP property?
Extended Resolution steps
Propagation Redundancy (PR) clauses
. . .

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Efficient Redundancy Checking [17]

The RUP Property

Given a clause set C and a clause c, we say that c has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C ∪ {c}), where c := {¬l : l ∈ c}, produces the empty clause.

Is a clause c with RUP property w.r.t. a checker’s clause set B a sound addition to B?
– Yes: B ∧

∧
l∈c ¬l is unsatisfiable → No way to satisfy B without satisfying c → B |= c

What kinds of clauses have the RUP property?
Conflict clauses from CDCL
Clauses arising from many pre– and inprocessing techniques
(variable elimination, subsumption, vivification, . . .)
Actually, almost all clauses produced by out-of-the-box CADICAL

What kinds of clauses do not have the RUP property?
Extended Resolution steps
Propagation Redundancy (PR) clauses
. . .

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Efficient Redundancy Checking [17]

The RUP Property

Given a clause set C and a clause c, we say that c has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C ∪ {c}), where c := {¬l : l ∈ c}, produces the empty clause.

Is a clause c with RUP property w.r.t. a checker’s clause set B a sound addition to B?
– Yes: B ∧

∧
l∈c ¬l is unsatisfiable → No way to satisfy B without satisfying c → B |= c

What kinds of clauses have the RUP property?
Conflict clauses from CDCL
Clauses arising from many pre– and inprocessing techniques
(variable elimination, subsumption, vivification, . . .)
Actually, almost all clauses produced by out-of-the-box CADICAL

What kinds of clauses do not have the RUP property?
Extended Resolution steps
Propagation Redundancy (PR) clauses
. . .

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Efficient Redundancy Checking [17]

Approach 2: RUP Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P.
Checking:

B := F
for i = 1, . . . ,n:

propagate ¬l in B for each l ∈ ci

if propagation in B does not yield the empty clause:
return ERROR

undo propagations in B
B := B ∪ ci

return VALIDATED

Checking complexity: O(|B|) per step ⇒ O(|P|2) for |P| ≫ |F |
Checking space usage: O(|F | + |P|) How to improve on both?

5/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P.
Checking:

B := F
for i = 1, . . . ,n:

propagate ¬l in B for each l ∈ ci

if propagation in B does not yield the empty clause:
return ERROR

undo propagations in B
B := B ∪ ci

return VALIDATED

Checking complexity:

O(|B|) per step ⇒ O(|P|2) for |P| ≫ |F |
Checking space usage: O(|F | + |P|) How to improve on both?

5/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P.
Checking:

B := F
for i = 1, . . . ,n:

propagate ¬l in B for each l ∈ ci

if propagation in B does not yield the empty clause:
return ERROR

undo propagations in B
B := B ∪ ci

return VALIDATED

Checking complexity: O(|B|) per step ⇒ O(|P|2) for |P| ≫ |F |
Checking space usage:

O(|F | + |P|) How to improve on both?

5/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced ci to a file ⇒ P = P.
Checking:

B := F
for i = 1, . . . ,n:

propagate ¬l in B for each l ∈ ci

if propagation in B does not yield the empty clause:
return ERROR

undo propagations in B
B := B ∪ ci

return VALIDATED

Checking complexity: O(|B|) per step ⇒ O(|P|2) for |P| ≫ |F |
Checking space usage: O(|F | + |P|) How to improve on both?

5/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

RUP Proof Checking

Actually, a solver also deletes clauses. ⇒ Put deletion information in the proof!
P = (o1, . . . ,oN) where oi = (opi , ci)

– opi ∈ {add, delete}
– delete: ci is a clause added by some oj , j < i , and not deleted by any ok , j < k < i
– commonly uses multi-set semantics: a clause may be added (+ deleted) multiple times

Formula:
x1 ∨ ¬x2

∧ x2 ∨ ¬x4

∧ x1 ∨ x2 ∨ x4

∧ ¬x1 ∨ ¬x3

∧ x1 ∨ ¬x3

∧ ¬x1 ∨ x3

∧ x1 ∨ x3 ∨ ¬x4

∧ x1 ∨ x3 ∨ x4

Proof:
add ¬x3

add x1 ∨ x2

add ¬x1

del ¬x3

add x2 ∨ x3 ∨ ¬x4

add x1 ∨ x2 ∨ x3

add ∅

6/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From RUP to DRUP [8]

Actually, a solver also deletes clauses. ⇒ Put deletion information in the proof!
P = (o1, . . . ,oN) where oi = (opi , ci)

– opi ∈ {add, delete}
– delete: ci is a clause added by some oj , j < i , and not deleted by any ok , j < k < i
– commonly uses multi-set semantics: a clause may be added (+ deleted) multiple times

Formula:
x1 ∨ ¬x2

∧ x2 ∨ ¬x4

∧ x1 ∨ x2 ∨ x4

∧ ¬x1 ∨ ¬x3

∧ x1 ∨ ¬x3

∧ ¬x1 ∨ x3

∧ x1 ∨ x3 ∨ ¬x4

∧ x1 ∨ x3 ∨ x4

Proof:
add ¬x3

add x1 ∨ x2

add ¬x1

del ¬x3

add x2 ∨ x3 ∨ ¬x4

add x1 ∨ x2 ∨ x3

add ∅

6/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From RUP to DRUP [8]

Approach 3: DRUP (Deletion RUP) Proof
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ ci

continue
propagate ¬l in B for each l ∈ ci

. . . // continue as in RUP Proof

Correctness:

deleting clauses only makes a clause set more satisfiable ✓
Complexity: O(|P| × M) where M is the max. volume of present clauses during solving
Space usage: O(M) ⇒ “fits into RAM if solving fits into RAM”

Can we further improve running time?

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRUP

Approach 3: DRUP (Deletion RUP) Proof
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ ci

continue
propagate ¬l in B for each l ∈ ci

. . . // continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable ✓
Complexity:

O(|P| × M) where M is the max. volume of present clauses during solving
Space usage: O(M) ⇒ “fits into RAM if solving fits into RAM”

Can we further improve running time?

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRUP

Approach 3: DRUP (Deletion RUP) Proof
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ ci

continue
propagate ¬l in B for each l ∈ ci

. . . // continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable ✓
Complexity: O(|P| × M) where M is the max. volume of present clauses during solving
Space usage:

O(M) ⇒ “fits into RAM if solving fits into RAM”

Can we further improve running time?

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRUP

Approach 3: DRUP (Deletion RUP) Proof
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ ci

continue
propagate ¬l in B for each l ∈ ci

. . . // continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable ✓
Complexity: O(|P| × M) where M is the max. volume of present clauses during solving
Space usage: O(M) ⇒ “fits into RAM if solving fits into RAM”

Can we further improve running time?

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRUP

Idea: Enrich proof to accelerate unit propagation (UP) of ci through B
P = (o1, . . . ,oN) where oi = (add, idi , ci ,di) or oi = (delete, idi)

– idi ∈ N+, di = ⟨di1, . . . ,diki⟩ where dij ∈ N+, ki ∈ N+

di references earlier clauses which UP needs to look at to arrive at the empty clause
– for 1 ≤ j < ki , clause # dij (i.e., the clause referred to by dij) must break down into a unit
– clause # diki must break down into ∅

Formula:
(1) x1 ∨ ¬x2

(2) x2 ∨ ¬x4

(3) x1 ∨ x2 ∨ x4

(4) ¬x1 ∨ ¬x3

(5) x1 ∨ ¬x3

(6) ¬x1 ∨ x3

(7) x1 ∨ x3 ∨ ¬x4

(8) x1 ∨ x3 ∨ x4

DRUP Proof:
add ¬x3

add x1 ∨ x2

add ¬x1

del ¬x3

add x2 ∨ x3 ∨ ¬x4

add x1 ∨ x2 ∨ x3

add ∅

LRUP Proof:
add (9) ¬x3 (5, 4)
add (10) x1 ∨ x2 (3, 2)
add (11) ¬x1 (6, 9)
del (9)
add (12) x2∨x3∨¬x4 (7, 11)
add (13) x1 ∨ x2 ∨ x3 (8, 12)
add (14) ∅ (11, 10, 1)

8/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From DRUP to LRUP [4]

Idea: Enrich proof to accelerate unit propagation (UP) of ci through B
P = (o1, . . . ,oN) where oi = (add, idi , ci ,di) or oi = (delete, idi)

– idi ∈ N+, di = ⟨di1, . . . ,diki⟩ where dij ∈ N+, ki ∈ N+

di references earlier clauses which UP needs to look at to arrive at the empty clause
– for 1 ≤ j < ki , clause # dij (i.e., the clause referred to by dij) must break down into a unit
– clause # diki must break down into ∅

Formula:
(1) x1 ∨ ¬x2

(2) x2 ∨ ¬x4

(3) x1 ∨ x2 ∨ x4

(4) ¬x1 ∨ ¬x3

(5) x1 ∨ ¬x3

(6) ¬x1 ∨ x3

(7) x1 ∨ x3 ∨ ¬x4

(8) x1 ∨ x3 ∨ x4

DRUP Proof:
add ¬x3

add x1 ∨ x2

add ¬x1

del ¬x3

add x2 ∨ x3 ∨ ¬x4

add x1 ∨ x2 ∨ x3

add ∅

LRUP Proof:
add (9) ¬x3 (5, 4)
add (10) x1 ∨ x2 (3, 2)
add (11) ¬x1 (6, 9)
del (9)
add (12) x2∨x3∨¬x4 (7, 11)
add (13) x1 ∨ x2 ∨ x3 (8, 12)
add (14) ∅ (11, 10, 1)

8/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From DRUP to LRUP [4]

Approach 4: LRUP (Linear RUP) Proof Checking
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ {# idi} // delete clause referred to by idi

continue
U := {l : l ∈ ci}
for j = 1, . . . , k − 1:

assert: clause # dij under U becomes a unit clause {u} // returns ERROR upon failure
U := U ∪ {u}

assert: clause # diki under U becomes the empty clause // returns ERROR upon failure
B := B ∪ {ci} // confirmed: B ∪ {ci} |= ∅

return VALIDATED

⇒ Larger proofs but much more efficient checking (often 10× or more)
⇒ Allows for backward search from empty clause to prune all irrelevant proof lines

9/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

LRUP

Approach 4: LRUP (Linear RUP) Proof Checking
B := F
for i = 1, . . . ,N:

if opi = delete:
B := B \ {# idi} // delete clause referred to by idi

continue
U := {l : l ∈ ci}
for j = 1, . . . , k − 1:

assert: clause # dij under U becomes a unit clause {u} // returns ERROR upon failure
U := U ∪ {u}

assert: clause # diki under U becomes the empty clause // returns ERROR upon failure
B := B ∪ {ci} // confirmed: B ∪ {ci} |= ∅

return VALIDATED

⇒ Larger proofs but much more efficient checking (often 10× or more)
⇒ Allows for backward search from empty clause to prune all irrelevant proof lines

9/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

LRUP

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x ∈ c
iff every resolvent c′ ∈ {c ⊗x c̃ | c̃ ∈ Fx} has the RUP property in F .

“Only” requiring each clause ci ∈ P to have the RAT property (rather than RUP) allows for stronger proofs!
For RAT clause c, F ∪ c is satisfiability-preserving to F but may be not equivalent to F
Allows to express satisfiability-preserving transformations like variable addition
As powerful as Extended Resolution

How to incorporate RAT into proof checking?
DRUP → DRAT: For each added clause ci , find pivot literal x ∈ ci and confirm that ci is RAT in B w.r.t. x

Convention: 1st literal of ci must be valid pivot
Generate all resolvents, check RUP for every one of them

LRUP → LRAT: Additions (add, idi , ci ,di , ri) with ri = ⟨ri1, . . . , rimi⟩, mi ∈ N0
Each rij references a clause c̃ and the required RUP steps for c′ = ci ⊗x c̃ (like di for ci in pure RUP)
Still need to internally maintain occurrences of each literal to check that all c̃ are covered

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x ∈ c
iff every resolvent c′ ∈ {c ⊗x c̃ | c̃ ∈ Fx} has the RUP property in F .

“Only” requiring each clause ci ∈ P to have the RAT property (rather than RUP) allows for stronger proofs!
For RAT clause c, F ∪ c is satisfiability-preserving to F but may be not equivalent to F
Allows to express satisfiability-preserving transformations like variable addition
As powerful as Extended Resolution

How to incorporate RAT into proof checking?
DRUP → DRAT: For each added clause ci , find pivot literal x ∈ ci and confirm that ci is RAT in B w.r.t. x

Convention: 1st literal of ci must be valid pivot
Generate all resolvents, check RUP for every one of them

LRUP → LRAT: Additions (add, idi , ci ,di , ri) with ri = ⟨ri1, . . . , rimi⟩, mi ∈ N0
Each rij references a clause c̃ and the required RUP steps for c′ = ci ⊗x c̃ (like di for ci in pure RUP)
Still need to internally maintain occurrences of each literal to check that all c̃ are covered

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x ∈ c
iff every resolvent c′ ∈ {c ⊗x c̃ | c̃ ∈ Fx} has the RUP property in F .

“Only” requiring each clause ci ∈ P to have the RAT property (rather than RUP) allows for stronger proofs!
For RAT clause c, F ∪ c is satisfiability-preserving to F but may be not equivalent to F
Allows to express satisfiability-preserving transformations like variable addition
As powerful as Extended Resolution

How to incorporate RAT into proof checking?
DRUP → DRAT: For each added clause ci , find pivot literal x ∈ ci and confirm that ci is RAT in B w.r.t. x

Convention: 1st literal of ci must be valid pivot
Generate all resolvents, check RUP for every one of them

LRUP → LRAT: Additions (add, idi , ci ,di , ri) with ri = ⟨ri1, . . . , rimi⟩, mi ∈ N0
Each rij references a clause c̃ and the required RUP steps for c′ = ci ⊗x c̃ (like di for ci in pure RUP)
Still need to internally maintain occurrences of each literal to check that all c̃ are covered

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x ∈ c
iff every resolvent c′ ∈ {c ⊗x c̃ | c̃ ∈ Fx} has the RUP property in F .

“Only” requiring each clause ci ∈ P to have the RAT property (rather than RUP) allows for stronger proofs!
For RAT clause c, F ∪ c is satisfiability-preserving to F but may be not equivalent to F
Allows to express satisfiability-preserving transformations like variable addition
As powerful as Extended Resolution

How to incorporate RAT into proof checking?
DRUP → DRAT: For each added clause ci , find pivot literal x ∈ ci and confirm that ci is RAT in B w.r.t. x

Convention: 1st literal of ci must be valid pivot
Generate all resolvents, check RUP for every one of them

LRUP → LRAT: Additions (add, idi , ci ,di , ri) with ri = ⟨ri1, . . . , rimi⟩, mi ∈ N0
Each rij references a clause c̃ and the required RUP steps for c′ = ci ⊗x c̃ (like di for ci in pure RUP)
Still need to internally maintain occurrences of each literal to check that all c̃ are covered

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

From (D|L)RUP to (D|L)RAT [7]

DIMACS CNF

p cnf 4 8

1 -2 0

2 -4 0

1 2 4 0

-1 -3 0

1 -3 0

-1 3 0

1 3 -4 0

1 3 4 0

-3 0

1 2 0

-1 0

d -3 0

2 3 -4 0

1 2 3 0

0

DRAT proof

9 -3 0 5 4 0

10 1 2 0 3 2 0

11 -1 0 6 9 0

11 d 9 0

12 2 3 -4 0 7 11 0

13 1 2 3 0 8 12 0

14 0 11 10 1 0

LRAT proof

These proofs only feature RUP additions. In an LRAT addition, each rij is written as the negated ID of c̃
followed by IDs for the RUP steps of c′.

11/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof (File) Formats: DRAT and LRAT

DRAT-based solving and checking: Common tool chain

./solver input.cnf proof.drat // solve, output DRAT proof

./drat-trim input.cnf proof.drat -L proof.lrat // transform DRAT proof to LRAT - fast

./cake-lpr input.cnf proof.lrat // validate LRAT proof - trusted / verified

Compressed DRAT and LRAT proofs
Binary file instead of text file

Numbers stored as integers instead of strings
Implicit separators

Variable byte length encoding for each literal, clause ID
A byte’s first seven bits denote its actual value
A byte’s last bit indicates if the number continues at the next byte
Makes proof independent of underlying integer domain (32 vs. 64 bit), saves space for small values

12/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRAT and LRAT: Pragmatics

DRAT-based solving and checking: Common tool chain

./solver input.cnf proof.drat // solve, output DRAT proof

./drat-trim input.cnf proof.drat -L proof.lrat // transform DRAT proof to LRAT - fast

./cake-lpr input.cnf proof.lrat // validate LRAT proof - trusted / verified

Compressed DRAT and LRAT proofs
Binary file instead of text file

Numbers stored as integers instead of strings
Implicit separators

Variable byte length encoding for each literal, clause ID
A byte’s first seven bits denote its actual value
A byte’s last bit indicates if the number continues at the next byte
Makes proof independent of underlying integer domain (32 vs. 64 bit), saves space for small values

12/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

DRAT and LRAT: Pragmatics

I wrote my own CDCL SAT solver. How can I let it produce UNSAT proofs?

DRAT:

super simple!
Create an (empty) proof file
Log each derivation of a redundant clause (including the empty clause) into the proof file
Log each deletion of a clause into the proof file, prepended with “d”

LRAT: Clause addition lines need to be enriched with dependency information (“hints”)
CDCL conflict clauses: simple – use conflict’s implication graph
Additional effort for each employed pre-/inprocessing technique

Other formats:
FRAT: Compromise between DRAT and FRAT at the developer’s discretion [2]
DPR, LPR: Propagation Redundancy (PR) reasoning [3]
VeriPB: Pseudo-Boolean reasoning [3]

Note: formally verified checkers are available for all these formats (sometimes translation-based)

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Adding Proof Support to Solvers

I wrote my own CDCL SAT solver. How can I let it produce UNSAT proofs?

DRAT: super simple!
Create an (empty) proof file
Log each derivation of a redundant clause (including the empty clause) into the proof file
Log each deletion of a clause into the proof file, prepended with “d”

LRAT:

Clause addition lines need to be enriched with dependency information (“hints”)
CDCL conflict clauses: simple – use conflict’s implication graph
Additional effort for each employed pre-/inprocessing technique

Other formats:
FRAT: Compromise between DRAT and FRAT at the developer’s discretion [2]
DPR, LPR: Propagation Redundancy (PR) reasoning [3]
VeriPB: Pseudo-Boolean reasoning [3]

Note: formally verified checkers are available for all these formats (sometimes translation-based)

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Adding Proof Support to Solvers

I wrote my own CDCL SAT solver. How can I let it produce UNSAT proofs?

DRAT: super simple!
Create an (empty) proof file
Log each derivation of a redundant clause (including the empty clause) into the proof file
Log each deletion of a clause into the proof file, prepended with “d”

LRAT: Clause addition lines need to be enriched with dependency information (“hints”)
CDCL conflict clauses: simple – use conflict’s implication graph
Additional effort for each employed pre-/inprocessing technique

Other formats:
FRAT: Compromise between DRAT and FRAT at the developer’s discretion [2]
DPR, LPR: Propagation Redundancy (PR) reasoning [3]
VeriPB: Pseudo-Boolean reasoning [3]

Note: formally verified checkers are available for all these formats (sometimes translation-based)

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Adding Proof Support to Solvers

I wrote my own CDCL SAT solver. How can I let it produce UNSAT proofs?

DRAT: super simple!
Create an (empty) proof file
Log each derivation of a redundant clause (including the empty clause) into the proof file
Log each deletion of a clause into the proof file, prepended with “d”

LRAT: Clause addition lines need to be enriched with dependency information (“hints”)
CDCL conflict clauses: simple – use conflict’s implication graph
Additional effort for each employed pre-/inprocessing technique

Other formats:
FRAT: Compromise between DRAT and FRAT at the developer’s discretion [2]
DPR, LPR: Propagation Redundancy (PR) reasoning [3]
VeriPB: Pseudo-Boolean reasoning [3]

Note: formally verified checkers are available for all these formats (sometimes translation-based)

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Adding Proof Support to Solvers

What about proofs from parallel solvers?
Pure portfolios:

trivial if each participant produces a proof
Search space splitting solvers: straight forward to stitch together proofs for sub-problems (e.g., [9])
Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]
Globally unique clause IDs without communication
– for o original clauses and p solver threads, the i-th thread assigns clause IDs o + i + kp (k ∈ N0)
After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Production: The Parallel Case

What about proofs from parallel solvers?
Pure portfolios: trivial if each participant produces a proof
Search space splitting solvers:

straight forward to stitch together proofs for sub-problems (e.g., [9])
Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]
Globally unique clause IDs without communication
– for o original clauses and p solver threads, the i-th thread assigns clause IDs o + i + kp (k ∈ N0)
After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Production: The Parallel Case

What about proofs from parallel solvers?
Pure portfolios: trivial if each participant produces a proof
Search space splitting solvers: straight forward to stitch together proofs for sub-problems (e.g., [9])
Clause-sharing solvers:

more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]
Globally unique clause IDs without communication
– for o original clauses and p solver threads, the i-th thread assigns clause IDs o + i + kp (k ∈ N0)
After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Production: The Parallel Case

What about proofs from parallel solvers?
Pure portfolios: trivial if each participant produces a proof
Search space splitting solvers: straight forward to stitch together proofs for sub-problems (e.g., [9])
Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]
Globally unique clause IDs without communication
– for o original clauses and p solver threads, the i-th thread assigns clause IDs o + i + kp (k ∈ N0)
After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Production: The Parallel Case

What about proofs from parallel solvers?
Pure portfolios: trivial if each participant produces a proof
Search space splitting solvers: straight forward to stitch together proofs for sub-problems (e.g., [9])
Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]
Globally unique clause IDs without communication
– for o original clauses and p solver threads, the i-th thread assigns clause IDs o + i + kp (k ∈ N0)
After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof Production: The Parallel Case

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file Gg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

— Produced Clauses →

S1

S2

S3

S4

Random 3-SAT formula, 180 variables. 4 notebook cores × 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchangeGg

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (1/2) [12]

Merging:

Funnel required clause additions, still in
reverse order, into singular proof file
Hierarchical merging along tree

“Root process” writes output to file
– Seeing an ID dij for the first time?
⇒ write deletion of dij before writing

the current statement!
– Finally: Invert lines of proof file

communication
Buffered

16/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (2/2) [12]

Merging:

Funnel required clause additions, still in
reverse order, into singular proof file
Hierarchical merging along tree
“Root process” writes output to file
– Seeing an ID dij for the first time?
⇒ write deletion of dij before writing

the current statement!
– Finally: Invert lines of proof file

communication
Buffered

16/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production (2/2) [12]

Results [11]: (using a hand-tailored LRUP checker operating on the inverted proof)
Mean speedup of proof-emitting solver @ 1520 cores over sequential solver (solving times only): 17.5

Mean speedup of best MALLOBSAT @ 1520 cores over sequential solver: 26.9
On average, assembling and checking a proof takes ≈ 3× solving time

Mean overhead of DRAT proof checking over sequential solving: ≈ 1×

Pruning irrelevant clause additions reduces proof size by ≈ 30–40×
LRAT proof size: median 3.1 GB, mean 11.6 GB, maximum 233.9 GB

Bottleneck:

Assembly and validation of a monolithic proof
Proof creation throttled by I/O bandwidth at final process
Checking can take very long
The assembled proof’s “corridor” of active clauses may no longer fit into RAM

Can we do better?

17/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production: Discussion

Results [11]: (using a hand-tailored LRUP checker operating on the inverted proof)
Mean speedup of proof-emitting solver @ 1520 cores over sequential solver (solving times only): 17.5

Mean speedup of best MALLOBSAT @ 1520 cores over sequential solver: 26.9
On average, assembling and checking a proof takes ≈ 3× solving time

Mean overhead of DRAT proof checking over sequential solving: ≈ 1×

Pruning irrelevant clause additions reduces proof size by ≈ 30–40×
LRAT proof size: median 3.1 GB, mean 11.6 GB, maximum 233.9 GB

Bottleneck: Assembly and validation of a monolithic proof
Proof creation throttled by I/O bandwidth at final process
Checking can take very long
The assembled proof’s “corridor” of active clauses may no longer fit into RAM

Can we do better?

17/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Distributed Proof Production: Discussion

https://i.pinimg.com/originals/1b/3d/b6/1b3db639721eeafb188a3cc3060ff58b.jpg

18/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Hermione’s Answer to More Scalable Trusted Solving

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

CheckerSAT

named pipe

Marijn Heule: Since LRUP checking is so efficient, we can feasibly do it in realtime!
Solver streams proof output into a pipe (UNIX special file)
Checker reads proof from pipe and checks it on-the-fly
– checking is done as soon as solving is done!

Almost no slowdown when running solver and checker on two hardware threads of the same core
No disk I/O required, same program code as with normal files (execute mkfifo beforehand)
Does not yield a persistent artifact to validate by independent parties

19/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Beyond Monolithic Proof Files

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

CheckerSAT

named pipe

Marijn Heule: Since LRUP checking is so efficient, we can feasibly do it in realtime!
Solver streams proof output into a pipe (UNIX special file)
Checker reads proof from pipe and checks it on-the-fly
– checking is done as soon as solving is done!
Almost no slowdown when running solver and checker on two hardware threads of the same core
No disk I/O required, same program code as with normal files (execute mkfifo beforehand)
Does not yield a persistent artifact to validate by independent parties

19/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Beyond Monolithic Proof Files

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?

– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?
– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?
– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking

Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?
– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
Is this sufficient?

How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?
– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Run one checker process for each solver thread, mirroring its reasoning
What about incoming shared clauses from another solver thread?
– Cannot check external clause because its prerequisites are unknown and (probably) not even present
– No need to check since the clause was checked by the sender’s checker!

⇒ Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

Checkers sign each successfully checked clause c with cryptographic checksum based on shared secret K :
SK (c) = HK (LRUP_ID(c) || c || SK (F))

– HK : Message Authentication Code (MAC), specifically 128-bit SipHash [1]
Clauses are shared together with their checksums
Each incoming clause c is forwarded to checker together with SK (c)
⇒ Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Clause Sharing with Real-time Checking [14]

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

Base S(c) on S(F)!

Parser

F

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c✓

Base S(c) on S(F)!

Parser

F

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

Base S(c) on S(F)!

Parser

F

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

c , S(c)

S(c)✓

Base S(c) on S(F)!

Parser

F

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

c , S(c)

S(c)✓

Base S(c) on S(F)!

Parser

S(UNSAT) Confirmer

F

F

✓

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Solver process

Checker

Clause sharing

Checker Checker

SAT SAT SAT

Checker

SAT
F , S(F)

c c ,
S(c)

c , S(c)

c✓

c , S(c)

S(c)✓

Base S(c) on S(F)!

Parser

S(UNSAT) Confirmer

F

F

✓

⇒ We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, . . .

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Real-time Checking: Full Setup

Monolithic proofs

1
×7

6

4
×7

6

16
×7

6

0

1

2

3

4

5

6

7

R
el

at
iv

e
ov

er
h

ea
d

(252∗)(271∗)(280∗)

ST

1
×7

6

4
×7

6

16
×7

6
0
1
2
3
4
5

10

15

(133) (146∗)(141∗)

TuP

1
×7

6

4
×7

6

16
×7

6

0

5

10

20

30

40

50
(132) (132) (127∗)

TuV†
On-the-fly checking

1
×7

6

4
×7

6

16
×7

6

32
×7

6

0.0
0.5
1.0
1.5
2.0

3.0

4.0

5.0

6.0

7.0

R
el

at
iv

e
ov

er
h

ea
d

(254∗) (268∗) (278) (280∗)

ST (=TuV)

Overhead relative to proof-free solving time · ST: Solving time · TuP: Time until Proof present · TuV: Time until Validation done
76-core nodes · †Data extrapolated · ∗some data outside of displayed domain

22/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Parallel Proof Tech: Scalability [14]

Confidence

Pe
rfo

rm
an

ce

Proof-free parallel [SS24]

Sequential solving +

Parallel proof prod. +

verified checking [THM23]

Sequential solving +
fast checking [PFB23]

fast checking [Mic+25]

Parallel on-the-fly
checking [S24]

Verified solving [Fle19]

[SS24] → [15]
[S24] → [14]
[Mic+25] → [11]
[PFB23] → [13]
[THM23] → [16]
[Fle19] → [5]

23/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Frontiers of Parallel Proof Technology

Confidence

Pe
rfo

rm
an

ce

Proof-free parallel [SS24]

Sequential solving +

Parallel proof prod. +

verified checking [THM23]

Sequential solving +
fast checking [PFB23]

fast checking [Mic+25]

Parallel on-the-fly Verified real-time checking?
checking [S24]

Verified solving [Fle19]

Faster verified checking
of monolithic proofs?

Faster verified solving?

Parallel proof production
and checking?

verified?
[SS24] → [15]
[S24] → [14]
[Mic+25] → [11]
[PFB23] → [13]
[THM23] → [16]
[Fle19] → [5]

23/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Frontiers of Parallel Proof Technology

Proofs: Powerful and practical technology to ensure that a solver’s result is correct
Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort

Highly efficient on-the-fly checking is possible if persistent proof artifact is expendable
Substantially more scalable than explicit proof production in distributed solving
Unclear if / how well this works for actual LRAT (not LRUP) derivations – especially for clause-sharing solving

Best of both worlds possible? Full scalability and persistent artifact?
Right now: Rise of new proof formats (PR, PB, . . .) promising shorter proofs for some problems [3]
– DRAT / LRAT is technically just as powerful but relies on variable addition for most powerful proofs

huge decision space, difficult to find a short proof
But: recent success in effective structured variable addition [6]

24/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Wrap-Up

Proofs: Powerful and practical technology to ensure that a solver’s result is correct
Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort
Highly efficient on-the-fly checking is possible if persistent proof artifact is expendable

Substantially more scalable than explicit proof production in distributed solving
Unclear if / how well this works for actual LRAT (not LRUP) derivations – especially for clause-sharing solving

Best of both worlds possible? Full scalability and persistent artifact?

Right now: Rise of new proof formats (PR, PB, . . .) promising shorter proofs for some problems [3]
– DRAT / LRAT is technically just as powerful but relies on variable addition for most powerful proofs

huge decision space, difficult to find a short proof
But: recent success in effective structured variable addition [6]

24/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Wrap-Up

Proofs: Powerful and practical technology to ensure that a solver’s result is correct
Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort
Highly efficient on-the-fly checking is possible if persistent proof artifact is expendable

Substantially more scalable than explicit proof production in distributed solving
Unclear if / how well this works for actual LRAT (not LRUP) derivations – especially for clause-sharing solving

Best of both worlds possible? Full scalability and persistent artifact?
Right now: Rise of new proof formats (PR, PB, . . .) promising shorter proofs for some problems [3]
– DRAT / LRAT is technically just as powerful but relies on variable addition for most powerful proofs

huge decision space, difficult to find a short proof
But: recent success in effective structured variable addition [6]

24/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Wrap-Up

Proof Pragmatics & Parallel Proof Technology

Propositional proof formats in practice
– DRUP, DRAT, LRUP, LRAT
– Time and memory complexity
– Practical implementations

Proof technology for parallel and distributed SAT solvers
– Constructing monolithic proof files
– Checking reasoning in real-time

Next Up: Applications of SAT solving

Automated planning
Bounded Model Checking

25/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap

[1] Jean-Philippe Aumasson und Daniel J. Bernstein. „SipHash: A Fast Short-Input PRF“. In: Progress in Cryptology - INDOCRYPT 2012. Hrsg. von Steven Galbraith
und Mridul Nandi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, S. 489–508. ISBN: 978-3-642-34931-7. DOI: 10.1007/978-3-642-34931-7_28.

[2] Seulkee Baek, Mario Carneiro und Marijn J. H. Heule. „A flexible proof format for SAT solver-elaborator communication“. In: Logical Methods in Computer Science 18
(2022).

[3] Tomas Balyo u. a., Hrsg. Proceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions. English. Department of Computer Science
Series of Publications B. Finland: Department of Computer Science, University of Helsinki, 2023.

[4] Luis Cruz-Filipe u. a. „Efficient Certified RAT Verification“. In: Automated Deduction – CADE. Springer, 2017, S. 220–236. DOI: 10.1007/978-3-319-63046-5_14.

[5] Mathias Fleury. „Optimizing a verified SAT solver“. In: NASA Formal Methods: 11th International Symposium, NFM 2019, Houston, TX, USA, May 7–9, 2019,
Proceedings 11. Springer. 2019, S. 148–165.

[6] Andrew Haberlandt, Harrison Green und Marijn J. H. Heule. „Effective Auxiliary Variables via Structured Reencoding“. In: Proc. Theory and Applications of
Satisfiability Testing (SAT). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. DOI: 10.4230/LIPIcs.SAT.2023.11.

[7] Marijn J. H. Heule. „The DRAT format and DRAT-trim checker“. In: CoRR abs/1610.06229 (2016). arXiv: 1610.06229.

[8] Marijn J. H. Heule, Warren Hunt und Nathan Wetzler. „Trimming while checking clausal proofs“. In: Proc. FMCAD. IEEE. 2013, S. 181–188. DOI:
10.1109/fmcad.2013.6679408.

[9] Marijn J. H. Heule, Oliver Kullmann und Victor Marek. „Solving and verifying the boolean pythagorean triples problem via cube-and-conquer“. In: Proc. Theory and
Applications of Satisfiability Testing (SAT). Springer. 2016, S. 228–245. DOI: 10.1007/978-3-319-40970-2_15.

[10] Marijn J. H. Heule, Norbert Manthey und Tobias Philipp. „Validating Unsatisfiability Results of Clause Sharing Parallel SAT Solvers.“. In: Proc. Pragmatics of SAT.
2014, S. 12–25. DOI: 10.29007/6vwg.

26/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

References I

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://arxiv.org/abs/1610.06229
https://doi.org/10.1109/fmcad.2013.6679408
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.29007/6vwg

[11] Dawn Michaelson u. a. „Producing Proofs of Unsatisfiability with Distributed Clause-Sharing SAT Solvers“. In: Journal of Automated Reasoning (JAR) 69 (2025). DOI:
10.1007/s10817-025-09725-w.

[12] Dawn Michaelson u. a. „Unsatisfiability proofs for distributed clause-sharing SAT solvers“. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). 2023, S. 348–366. DOI: 10.1007/978-3-031-30823-9_18.

[13] Florian Pollitt, Mathias Fleury und Armin Biere. „Faster LRAT checking than solving with CaDiCaL“. In: Proc. Theory and Applications of Satisfiability Testing (SAT).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023, 21:1–21:12. DOI: 10.4230/LIPIcs.SAT.2023.21.

[14] Dominik Schreiber. „Trusted Scalable SAT Solving with on-the-fly LRAT Checking“. In: Theory and Applications of Satisfiability Testing (SAT). 2024, 25:1–25:19. DOI:
10.4230/LIPIcs.SAT.2024.25.

[15] Dominik Schreiber und Peter Sanders. „MallobSat: Scalable SAT Solving by Clause Sharing“. In: Journal of Artificial Intelligence Research (JAIR) 80 (2024),
S. 1437–1495. DOI: 10.1613/jair.1.15827.

[16] Yong Kiam Tan, Marijn J. H. Heule und Magnus Myreen. „Verified LRAT and LPR Proof Checking with cake_lpr“. In: SAT Competition. 2023, S. 89.

[17] Allen Van Gelder. „Verifying RUP Proofs of Propositional Unsatisfiability.“. In: ISAIM. 2008.

27/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

References II

https://doi.org/10.1007/s10817-025-09725-w
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2024.25
https://doi.org/10.1613/jair.1.15827

	Literatur

