Practical SAT Solving

Lecture 9 — Proof Pragmatics & Parallel Proof Technology SAt
Markus Iser, Dominik Schreiber | June 30, 2025 Scadie Aomded Reasoning

Overview

Recap Lecture 8

m Popular parallelization approaches for SAT (“antisocial nerds” analogy)
— Search space splitting, Cube&Conquer
— Pure portfolio
— Clause sharing portfolio

m Deep dive into Mallob system for scheduling & solving SAT tasks

Today: Proof Pragmatics & Parallel Proof Technology

m Common state-of-the-art proof formats

m Pragmatics of proof production and checking

m Producing proofs with parallel + distributed solvers
m Beyond proof files: on-the-fly checking

2/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Proofs: Back To Basics

m Solver on unsatisfiable formula F produces sequence of clauses P := (¢q, Cp, ..., Cn) With ¢, = ()
m Goal: Justify fori=1,... nthat F |= ¢, i.e., that ¢; follows from F

— actually (in practice): that (F U Uj’:j Cj) = Ci
m Clausal Proof P: Expression of P with all information needed to justify all steps

3/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Proofs: Back To Basics

m Solver on unsatisfiable formula F produces sequence of clauses P := (¢q, Cp, ..., Cn) With ¢, = ()
m Goal: Justify fori=1,... nthat F |= ¢, i.e., that ¢; follows from F

— actually (in practice): that (F U Uj’:j Cj) = Ci
m Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proofs: Back To Basics

m Solver on unsatisfiable formula F produces sequence of clauses P := (¢q, Cp, ..., Cn) With ¢, = ()
m Goal: Justify fori=1,... nthat F = ¢, i.e., that ¢; follows from F

— actually (in practice): that (F U Uj’:j Cj) = Ci
m Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

Approach 1: Basic Clausal Proof

m Solving: Solver just logs each produced cito afile = P =P

m Checking: Maintain clause database B initialized as B := F;
for each c;, confirm that B = ¢; and then B := BU ¢;

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Proofs: Back To Basics

m Solver on unsatisfiable formula F produces sequence of clauses P := (¢q, Cp, ..., Cn) With ¢, = ()
m Goal: Justify fori=1,... nthat F = ¢, i.e., that ¢; follows from F

— actually (in practice): that (F U Uj’:j Cj) = Ci
m Clausal Proof P: Expression of P with all information needed to justify all steps efficiently (?)

Approach 1: Basic Clausal Proof

m Solving: Solver just logs each produced cito afile = P =P

m Checking: Maintain clause database B initialized as B := F;
for each c;, confirm that B = ¢; and then B := BU ¢;

m How do we perform the confirmation step?

3/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Efficient Redundancy Checking [17/]

The RUP Property

Given a clause set C and a clause ¢, we say that ¢ has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C U {c}), where ¢ := {—/ : | € c}, produces the empty clause.

m Is a clause ¢ with RUP property w.r.t. a checker’s clause set B a sound addition to B?

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Efficient Redundancy Checking [17/]

The RUP Property

Given a clause set C and a clause ¢, we say that ¢ has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C U {c}), where ¢ := {—/ : | € c}, produces the empty clause.

m Is a clause ¢ with RUP property w.r.t. a checker’s clause set B a sound addition to B?
—Yes: BA \,..—/is unsatisfiable — No way to satisfy B without satisfyingc — B¢

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Efficient Redundancy Checking [17/]

The RUP Property

Given a clause set C and a clause ¢, we say that ¢ has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C U {c}), where ¢ := {—/ : | € c}, produces the empty clause.

m Is a clause ¢ with RUP property w.r.t. a checker’s clause set B a sound addition to B?
—Yes: BA \,..—/is unsatisfiable — No way to satisfy B without satisfyingc — B¢

m What kinds of clauses have the RUP property?
m Conflict clauses from CDCL
m Clauses arising from many pre— and inprocessing techniques
(variable elimination, subsumption, vivification, ...)
m Actually, almost all clauses produced by out-of-the-box CADICAL

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Efficient Redundancy Checking [17/]

The RUP Property

Given a clause set C and a clause ¢, we say that ¢ has the Reverse Unit Propagation (RUP) property iff
unit propagation on (C U {c}), where ¢ := {—/ : | € c}, produces the empty clause.

m Is a clause ¢ with RUP property w.r.t. a checker’s clause set B a sound addition to B?
—Yes: BA \,..—/is unsatisfiable — No way to satisfy B without satisfyingc — B¢

m What kinds of clauses have the RUP property?
m Conflict clauses from CDCL
m Clauses arising from many pre— and inprocessing techniques
(variable elimination, subsumption, vivification, ...)
m Actually, almost all clauses produced by out-of-the-box CADICAL

m What kinds of clauses do not have the RUP property?
m Extended Resolution steps
m Propagation Redundancy (PR) clauses
. ...

4/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced c;to afile = P = P.
Checking:

B:=F
fori=1,....n:
propagate —/ in B for each | € ¢;
if propagation in B does not yield the empty clause:
return ERROR
undo propagations in B
B := BUc;
return VALIDATED

5/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced c;to afile = P = P.
Checking:

B:=F
fori=1,....n:
propagate —/ in B for each | € ¢;
if propagation in B does not yield the empty clause:
return ERROR
undo propagations in B
B := BUc;
return VALIDATED

Checking complexity:

5/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced c;to afile = P = P.
Checking:

B:=F
fori=1,....n:
propagate —/ in B for each | € ¢;
if propagation in B does not yield the empty clause:
return ERROR
undo propagations in B
B := BUc;
return VALIDATED

Checking complexity: O(|B|) per step = O(|P|?) for |P| > |F]
Checking space usage:

5/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

RUP Proof Checking

Approach 2: RUP Proof

Solving: Solver just logs each produced c;to afile = P = P.
Checking:

B:=F
fori=1,....n:
propagate —/ in B for each | € ¢;
if propagation in B does not yield the empty clause:
return ERROR
undo propagations in B
B := BUc;
return VALIDATED

Checking complexity: O(|B|) per step = O(|P|?) for |P| > |F|
Checking space usage: O(|F| + |P|) How to improve on both?

5/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

From RUP to DRUP [&]

Actually, a solver also deletes clauses. = Put deletion information in the proof!
m P =(04,...,0ny) Where o; = (0p;, Ci)
— op; € {add,delete}
—delete: ¢;is a clause added by some o;, j < i, and not deleted by any ok, j < k < i
— commonly uses multi-set semantics: a clause may be added (+ deleted) multiple times

6/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

From RUP to DRUP [&]

Actually, a solver also deletes clauses. = Put deletion information in the proof!

m P =(01,...,0n) where 0; = (0p;, C))
—op; € {add, delete}

—delete: ¢;is a clause added by some o;, j < i, and not deleted by any ok, j < k < i
— commonly uses multi-set semantics: a clause may be added (+ deleted) multiple times

Formula:

X1V —Xo

Xo \V =Xy
X1V XoV Xy
—X1V X3
X1V X3
—X1V X3
X1V X3V Xy
X1V X3V Xy

> > > > > > >

6/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Proof:

add —X3

add x1V Xo

add —X1

del —Xx3

add Xo V X3V —Xy
add X1V Xo V X3
add 0

AT

DRUP

Approach 3: DRUP (Deletion RUP) Proof

B:=F
fori=1,... N:
if op; = delete:
B:ZB\C,'
continue

propagate —/in B for each | € ¢;
// continue as in RUP Proof

Correctness:

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

DRUP

Approach 3: DRUP (Deletion RUP) Proof

B:=F
fori=1,... N:
if op; = delete:
B:ZB\C,'
continue

propagate —/in B for each | € ¢;
// continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable v/
Complexity:

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

DRUP

Approach 3: DRUP (Deletion RUP) Proof

B=F
fori=1,... N:
if op; = delete:
B:ZB\C,'
continue

propagate —/in B for each | € ¢;
// continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable v/

Complexity: O(|P| x M) where M is the max. volume of present clauses during solving
Space usage:

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

DRUP

Approach 3: DRUP (Deletion RUP) Proof

B=F
fori=1,... N:
if op; = delete:
B:ZB\C,'
continue

propagate —/in B for each | € ¢;
// continue as in RUP Proof

Correctness: deleting clauses only makes a clause set more satisfiable v/
Complexity: O(|P| x M) where M is the max. volume of present clauses during solving
Space usage: O(M) = “fits into RAM if solving fits into RAM”

Can we further improve running time?

7/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

From DRUP to LRUP [4]

Idea: Enrich proof to accelerate unit propagation (UP) of ¢; through B
m P =(0y,...,0n) Where 0; = (add, id;, c;, d;) or 0; = (delete, id))
—id; e N*, dj=(dj,..., dik;> where dj; € N*, ki € Nt
m 0 references earlier clauses which UP needs to look at to arrive at the empty clause
—for 1 <j < k;, clause # dj (i.e., the clause referred to by dj;) must break down into a unit
— clause # dj, must break down into ()

8/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

From DRUP to LRUP [4]

Idea: Enrich proof to accelerate unit propagation (UP) of ¢; through B

m P =(0y,...,0n) Where 0; = (add, id;, c;, d;) or 0; = (delete, id))

—id; e N*, dj=(dj,..., dik,'> where d,'j e N*, ke N*

m 0 references earlier clauses which UP needs to look at to arrive at the empty clause
—for 1 <j < k;, clause # dj (i.e., the clause referred to by dj;) must break down into a unit

8/27

— clause # dj, must break down into ()

Formula: DRUP Proof:

(1) x4V —xo add —Xxs

(2) XoV =Xy add x1V Xo

(3) X1V XoV Xq add —xq

(4) —Xx1V X3 del —x3

(5) x1V-x3 add xoV X3V —Xy
(6) X1V X3 add X1V Xo V X3
(7) X4V X3V —Xq add 0

(8) X1V X3V X4

June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

LRUP Proof:

add (9) —x3 (5, 4)

add (10) x4V X (3, 2)

add (11) —xq (6, 9)

del (9)

add (12) X0V X3V Xy (7, 11)
add (13) X1V XoV X3 (8, 12)

add

(14) ¢ (11, 10, 1)

AT

LRUP

Approach 4: LRUP (Linear RUP) Proof Checking

B:=F
fori=1,... N:
if op; = delete:
B:= B\ {#1id;} // delete clause referred to by idj
continue
U=1{l:1cg}
for;=1,... . k—1:
assert: clause # d; under U becomes a unit clause {u} // returns ERROR upon failure
U:=Uu{u}
assert: clause # dj, under U becomes the empty clause // returns ERROR upon failure
B:= BU{cj} //confirmed: BU{ci} =0
return VALIDATED

9/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

LRUP

Approach 4: LRUP (Linear RUP) Proof Checking

B:=F
fori=1,... N:
if op; = delete:
B:= B\ {#1id;} // delete clause referred to by idj
continue
U=1{l:1cg}
for;=1,... . k—1:
assert: clause # d; under U becomes a unit clause {u} // returns ERROR upon failure
U:=Uu{u}
assert: clause # dj, under U becomes the empty clause // returns ERROR upon failure
B:= BU{cj} //confirmed: BU{ci} =0
return VALIDATED

= Larger proofs but much more efficient checking (often 10x or more)
= Allows for backward search from empty clause to prune all irrelevant proof lines

9/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x € ¢
iff every resolvent ¢’ € {c ®y € | ¢ € Fx} has the RUP property in F.

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x € ¢
iff every resolvent ¢’ € {c ®y € | ¢ € Fx} has the RUP property in F.

“Only” requiring each clause ¢; € P to have the RAT property (rather than RUP) allows for stronger proofs!
m For RAT clause ¢, F U c is satisfiability-preserving to F but may be not equivalent to F
m Allows to express satisfiability-preserving transformations like variable addition
m As powerful as Extended Resolution

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x € ¢
iff every resolvent ¢’ € {c ®y € | ¢ € Fx} has the RUP property in F.

“Only” requiring each clause ¢; € P to have the RAT property (rather than RUP) allows for stronger proofs!
m For RAT clause ¢, F U c is satisfiability-preserving to F but may be not equivalent to F
m Allows to express satisfiability-preserving transformations like variable addition
m As powerful as Extended Resolution

How to incorporate RAT into proof checking?

m DRUP — DRAT: For each added clause c¢;, find pivot literal x € ¢; and confirm that ¢; is RAT in Bw.r.t. x

m Convention: 1st literal of ¢; must be valid pivot
m Generate all resolvents, check RUP for every one of them

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

From (D|L)RUP to (D|L)RAT [7]

Resolution Asymmetric Tautology (recap)

Clause c has the Resolution Asymmetric Tautology (RAT) property in F w.r.t. literal x € ¢
iff every resolvent ¢’ € {c ®y € | ¢ € Fx} has the RUP property in F.

“Only” requiring each clause ¢; € P to have the RAT property (rather than RUP) allows for stronger proofs!
m For RAT clause ¢, F U c is satisfiability-preserving to F but may be not equivalent to F
m Allows to express satisfiability-preserving transformations like variable addition
m As powerful as Extended Resolution

How to incorporate RAT into proof checking?

m DRUP — DRAT: For each added clause c¢;, find pivot literal x € ¢; and confirm that ¢; is RAT in Bw.r.t. x

m Convention: 1st literal of ¢; must be valid pivot
m Generate all resolvents, check RUP for every one of them

m LRUP — LRAT: Additions (add, id;, ¢;, d}, r;) with r; = (i1, ..., fim), M; € Ny
m Each rj references a clause ¢ and the required RUP steps for ¢’ = ¢; ®x € (like d for ¢; in pure RUP)
m Still need to internally maintain occurrences of each literal to check that all ¢ are covered

10/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Proof (File) Formats: DRAT and LRAT

11/27

4 R
DIMACS CNF

p cnf 4 8
1 -2

[—
N
G

|
|—L
|
w
TGN
O O O O O O O O

w w

- J

These proofs only feature RUP additions. In an LRAT addition, each r; is written as the negated ID of ¢

June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

&

N W

w

[DRAT proof

O O O O O O O

~

J

4)
LRAT proof
9 -3 0 0
10 1 2 0 0
11 -1 0 0
11 4 9 0
12 2 3 -40 0
13 1 2 30 0
14 0 0
- /

followed by IDs for the RUP steps of ¢'.

AT

DRAT and LRAT: Pragmatics

DRAT-based solving and checking: Common tool chain

./solver input.cnf proof.drat
./drat-trim input.cnf proof.drat -L proof.lrat fast
./cake-1pr input.cnf proof.lrat trusted / verified

12/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

DRAT and LRAT: Pragmatics

DRAT-based solving and checking: Common tool chain

./solver input.cnf proof.drat // solve, output DRAT proof
./drat-trim input.cnf proof.drat -L proof.lrat // transform DRAT proof to LRAT - fast
./cake-1pr input.cnf proof.lrat // validate LRAT proof - trusted / verified

Compressed DRAT and LRAT proofs

m Binary file instead of text file
m Numbers stored as integers instead of strings
m Implicit separators
m Variable byte length encoding for each literal, clause ID

m A byte’s first seven bits denote its actual value
m A byte’s last bit indicates if the number continues at the next byte
m Makes proof independent of underlying integer domain (32 vs. 64 bit), saves space for small values

12/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Adding Proof Support to Solvers

| wrote my own CDCL SAT solver. How can | let it produce UNSAT proofs?
DRAT:

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Adding Proof Support to Solvers

| wrote my own CDCL SAT solver. How can | let it produce UNSAT proofs?

DRAT: super simple!
m Create an (empty) proof file
m Log each derivation of a redundant clause (including the empty clause) into the proof file
m Log each deletion of a clause into the proof file, prepended with “d”

LRAT:

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Adding Proof Support to Solvers

| wrote my own CDCL SAT solver. How can | let it produce UNSAT proofs?

DRAT: super simple!
m Create an (empty) proof file
m Log each derivation of a redundant clause (including the empty clause) into the proof file
m Log each deletion of a clause into the proof file, prepended with “d”

LRAT: Clause addition lines need to be enriched with dependency information (“hints”)
m CDCL conflict clauses: simple — use conflict’s implication graph
m Additional effort for each employed pre-/inprocessing technique

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Adding Proof Support to Solvers

| wrote my own CDCL SAT solver. How can | let it produce UNSAT proofs?

DRAT: super simple!
m Create an (empty) proof file
m Log each derivation of a redundant clause (including the empty clause) into the proof file
m Log each deletion of a clause into the proof file, prepended with “d”

LRAT: Clause addition lines need to be enriched with dependency information (“hints”)
m CDCL conflict clauses: simple — use conflict’s implication graph
m Additional effort for each employed pre-/inprocessing technique

Other formats:
m FRAT: Compromise between DRAT and FRAT at the developer’s discretion [2]
m DPR, LPR: Propagation Redundancy (PR) reasoning [3]
m \VeriPB: Pseudo-Boolean reasoning [3]

Note: formally verified checkers are available for all these formats (sometimes translation-based)

13/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proof Production: The Parallel Case

What about proofs from parallel solvers?
m Pure portfolios:

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proof Production: The Parallel Case

What about proofs from parallel solvers?
m Pure portfolios: trivial if each participant produces a proof
m Search space splitting solvers:

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proof Production: The Parallel Case

What about proofs from parallel solvers?
m Pure portfolios: trivial if each participant produces a proof
m Search space splitting solvers: straight forward to stitch together proofs for sub-problems (e.g., [9])
m Clause-sharing solvers:

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proof Production: The Parallel Case

What about proofs from parallel solvers?
m Pure portfolios: trivial if each participant produces a proof
m Search space splitting solvers: straight forward to stiich together proofs for sub-problems (e.g., [9])
m Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Proof Production: The Parallel Case

What about proofs from parallel solvers?
m Pure portfolios: trivial if each participant produces a proof
m Search space splitting solvers: straight forward to stiich together proofs for sub-problems (e.g., [9])
m Clause-sharing solvers: more difficult due to cross-references between solvers’ clauses [10]

Before 2023: Large gap of trustworthiness between best sequential and best parallel (clause-sharing) solvers

2023: LRAT-based proofs from clause-sharing solvers [12]

m Globally unique clause IDs without communication
— for o original clauses and p solver threads, the i-th thread assigns clause IDs o0 + i + kp (k € Np)

m After solving, rewind the procedure, using “hints” of LRAT to trace dependencies of empty clause
m Funnel all clauses marked as required into a single, ordered proof file

14/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

Random 3-SAT formula, 180 variables. 4 notebook cores x 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

Random 3-SAT formula, 180 variables. 4 notebook cores x 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

Random 3-SAT formula, 180 variables. 4 notebook cores x 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

Random 3-SAT formula, 180 variables. 4 notebook cores x 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

= e

Random 3-SAT formula, 180 variables. 4 notebook cores x 1.7 s. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

Ieé. 4 notebook cores x 1.7s. 300k dependencies (w/o orig. clauses).

kmula, 180 variab

Random 3-SAT fo

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

=5 = T - == . = Frenl=———

—— et

Random 3-SAT formula, 180 variableé. 4 notebook corés x 1. ls. 300k dependencies (w/o orig. clauses).

Solving: Each thread derives and shares clauses, logs to partial proof file

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

= T - == . = o — —

—— et

Rar?d“om 3-SAT fd}mula, 180 variableé. 4 notebook corés x 1.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

RarTcAi“om —SAT |

e ———r

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

formula, 180 variableé. 4 notebook corés x 1.7 s. 300k dependencies (w/o orig. clauses).

AT

Distributed Proof Production (1/2) [12]

RarTcAiﬂom 3-SAT forrmula, 180 variablee. 4 notebook cores >< 1.7s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Produc

Random 3-SAT formula, 180 v

tion (1/2)

[12]

riables. 4 notebook cores X ?1N.7 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

e = 1

kdependencies (w/o orig. clauses).

Rahdom 3-SAT formula, 180 variables. 4 notebook cdres ><j1‘.7 s. 300

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

‘—-—ﬁ-—b{m‘\ S0

Rahdom 3-SAT formula, 180 variables. 4 notebook cores ><717 s. 300k dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

it

Random AT 'form»ula, VO variables. 4 ndtebook cores ;{.7 S. SOOk dependencies (w/o orig. clauses).

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (1/2) [12]

— Produced Clauses —

s =N
So b

S3

S4

Random SAT ble kcofes « 1.7s. 300k dependencies (w/o orig. clauses).

'f‘orrunUIé,“1 d variab .A noteboo

Reconstruction: Trace required clauses, revert each clause exchange

15/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (2/2) [12]

vv ?‘? ?? ‘r‘r
—~

m Funnel required clause additions, still in
reverse order, into singular proof file ? ?

Merging:

m Hierarchical merging along tree

l Buffered
communication

11111111111 , 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Distributed Proof Production (2/2) [12]

Merging: Rﬁ

m Funnel required clause additions, still in
reverse order, into singular proof file ' :

m Hierarchical merging along tree
m “Root process” writes output to file § % g

— Seeing an ID dj for the first time?
= write deletion of dj; before writing
the current statement!

— Finally: Invert lines of proof file

lBuffered — ><> —
communication — —

16/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Distributed Proof Production: Discussion

Results [11]: (using a hand-tailored LRUP checker operating on the inverted proof)

m Mean speedup of proof-emitting solver @ 1520 cores over sequential solver (solving times only): 17.5
m Mean speedup of best MALLOBSAT @ 1520 cores over sequential solver: 26.9

m On average, assembling and checking a proof takes ~ 3 x solving time
m Mean overhead of DRAT proof checking over sequential solving: ~ 1x

m Pruning irrelevant clause additions reduces proof size by ~ 30—40x
m LRAT proof size: median 3.1 GB, mean 11.6 GB, maximum 233.9 GB

Bottleneck:

17/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Distributed Proof Production: Discussion

Results [11]: (using a hand-tailored LRUP checker operating on the inverted proof)

m Mean speedup of proof-emitting solver @ 1520 cores over sequential solver (solving times only): 17.5
m Mean speedup of best MALLOBSAT @ 1520 cores over sequential solver: 26.9

m On average, assembling and checking a proof takes ~ 3 x solving time
m Mean overhead of DRAT proof checking over sequential solving: ~ 1x

m Pruning irrelevant clause additions reduces proof size by ~ 30—40x
m LRAT proof size: median 3.1 GB, mean 11.6 GB, maximum 233.9 GB

Bottleneck: Assembly and validation of a monolithic proof
m Proof creation throttled by I/O bandwidth at final process
m Checking can take very long
m The assembled proof’s “corridor” of active clauses may no longer fit into RAM

Can we do better?

17/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Hermione’s Answer to More Scalable Trusted Solving

https://i.pinimg.com/originals/1b/3d/b6/1b3db639721eeafb188a3cc3060ff58b.jpg

18/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Beyond Monolithic Proof Files

mkfifo lratproof.pipe // create “pipe” file A
// Solve & check concurrently via pipe 8SAT % Checker
./solver input.cnf lratproof.pipe & s |

./lrat-check input.cnf lratproof.pipe

Marijn Heule: Since LRUP checking is so efficient, we can feasibly do it in realtime!
m Solver streams proof output into a pipe (UNIX special file)

m Checker reads proof from pipe and checks it on-the-fly
— checking is done as soon as solving is done!

AT

19/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Beyond Monolithic Proof Files

mkfifo lratproof.pipe // create “pipe” file A
// Solve & check concurrently via pipe 8SAT % Checker
./solver input.cnf lratproof.pipe & s |

./lrat-check input.cnf lratproof.pipe

Marijn Heule: Since LRUP checking is so efficient, we can feasibly do it in realtime!
m Solver streams proof output into a pipe (UNIX special file)

m Checker reads proof from pipe and checks it on-the-fly
— checking is done as soon as solving is done!
m Almost no slowdown when running solver and checker on two hardware threads of the same core

m No disk I/O required, same program code as with normal files (execute mkfifo beforehand)
m Does not yield a persistent artifact to validate by independent parties

19/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

— Cannot check external clause because its prerequisites are unknown and (probably) not even present
— No need to check since the clause was checked by the sender’s checker!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

— Cannot check external clause because its prerequisites are unknown and (probably) not even present
— No need to check since the clause was checked by the sender’s checker!

= Forward each incoming external clause to your checker as an axiom, i.e., without re-checking

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

— Cannot check external clause because its prerequisites are unknown and (probably) not even present
— No need to check since the clause was checked by the sender’s checker!

= Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
m Is this sufficient?

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

— Cannot check external clause because its prerequisites are unknown and (probably) not even present
— No need to check since the clause was checked by the sender’s checker!

= Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
m Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Clause Sharing with Real-time Checking [14]

m Run one checker process for each solver thread, mirroring its reasoning
m What about incoming shared clauses from another solver thread?

— Cannot check external clause because its prerequisites are unknown and (probably) not even present
— No need to check since the clause was checked by the sender’s checker!

= Forward each incoming external clause to your checker as an axiom, i.e., without re-checking
m Is this sufficient? How do we account for incorrect shared clauses? Memory bug, network error, race condition, . . .

m Checkers sign each successfully checked clause ¢ with cryptographic checksum based on shared secret K:
Sk(c) = Hk(LRUP_ID(c) || ¢ || Sk(F))
— Hk: Message Authentication Code (MAC), specifically 128-bit SipHash [1]

m Clauses are shared together with their checksums

m Each incoming clause c is forwarded to checker together with Sk(c)
= Checker can validate that another trusted instance checked this clause!

20/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

Checker

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Checker

Checker

Checker

AT

Real-time Checking: Full Setup

F -~ 777777777 solerprocess |
Parser : { { { { 7. |
F. S(F) i 8 SAT 2 SAT 8 SAT 8 SAT i Clause‘sharing
1 r_._"_fl r,____ﬁl r’___f_l r’/* ,
Base S(c) on S(F)! | Checker Checker Checker Checker

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

F | Solver process

Parser

FLoF) / SAT / SAT / SAT / SAT \
i l - /_l — ﬁl — /l — /T ‘
- - - o o o
M) 00 HE HE
Base S(c) on S(F)! | Checker Checker Checker Checker

cv

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

F | Solver process

Parser

: Clause sharing
FLoF) (SAT| |/SAT| |(/SAT| |/SAT ‘
ilr-b /_lr* ﬁlr" /lr_’ /T ‘CS(C)
- - - o I I
A5 00 NI Hi
Base S(c) on S(F)! | Checker Checker Checker Checker

cv

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

F ~ solverprocess |
Parser i { { - S(CV{ { T. |
F. S(F) i 8 SAT 2 SAT l%SAT 8 SAT i Clause‘sh ing
i l r_> /_l r_. e !l r_, — l r_’ e . g S(C)

Base S(c) on S(F)!' | Checker Checker
cv S(c)v

Checker

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

F ~ solverprocess |
Parser i { { . S(CV{ { T. |
F. S(F) i 8 SAT 2 SAT l%SAT 8 SAT i Clause‘sh ing
i l r_> /_l r_. e !l r_. v l r_’ /il g S(C)

Base S(c) on S(F)!' | Checker Checker Checker | S() _ | Confirmer |
cv S(c)v v

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving &‘(IT

Real-time Checking: Full Setup

_________________________________ |
F | Solver process

s 7 {

Parser i {
o) |) SAT) SAT
Ve

Base S(c)on S(F)! | Checker

cv

Checker

= We only need to trust our checksums and our parser, checkers, and confirmer.
Not the SAT solvers, not the sharing logic, not the communication, ...

21/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

%SAT 2 SAT Clause sharing
4
77[1 =)= l — /T L S(6)
i :
Checker Checker | S(Confirmer |,
+— v
S(c)v v

AT

Parallel Proof Tech: Scalability [14]

Monolithic proofs On-the-fly checking
ST TuP TuV' ST (=TuV)
- (252*)(271*) (280*) (133) (146*)(141*) 50 (132) (132) (127%) 7 0 (254*) (268*) (278) (280*)
6 - 19 T _ 6.0 -
< ’ 40 7 <
35 S 5.0 1
ﬁ ° ﬁ 8
S 44 {101 30 7 4.0 A
o 8 o o
.g 31 . . 20 - .ng 3.0 7 . f ;
ks) T k= —i— T :
29 ¢+ i i g 2.0 - T T
[} H -
o= 4 4+ + %] 10 - —|_ = 1.5 11 . b 0 1
1 mE-: -] 2 | 5 i 10 7 J_ _I_ J__
T T 7|1l T 059 1 7 e
0 T T 0 T T T 0 T —+ —+ 0.0 T T T
o) Ne) Ne) Ne) o) o) Ne) o) Ne) o) © Ne) o)
I~ I~ I~ I~ I~ I~ I~ I~ D~ b~ b~ D~ D~
X X X X X X X X X X X X X
- ¥ = - T Z - Y = ~ =~ = &

AT

Frontiers of Parallel Proof Technology

Proof-free parallel [S524]

A O
Parallel on-the-fl
checking [S24]
o — [15]
% Parallel f prod B
arallel proof prod. +
S| fast chec?(ing[iC4+25] — 1
= — [13]
& | Sequential solving + — [16]
fast checking [PFB23] 5 [5]
~ Sequential solving +
verified checking [THM23]

Verified solving [Fle19] @
=

Confidence

23/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Frontiers of Parallel Proof Technology

Proof-free parallel [S524]

A O
Parallel on-the-fl
checking [S24]
o — [15]
% Parallel f prod B
arallel proof prod. +
S| fast chec?(ing[iC4+25] — 1
= — [13]
& | Sequential solving + — [16]
fast checking [PFB23] 5 [5]
~ Sequential solving +
verified checking [THM23]

Verified solving [Fle19] @
=

Confidence

23/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving A\‘(IT

Wrap-Up

m Proofs: Powerful and practical technology to ensure that a solver’s result is correct
m Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort

24/27 June 30,2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Wrap-Up

m Proofs: Powerful and practical technology to ensure that a solver’s result is correct
m Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort

m Highly efficient on-the-fly checking is possible if persistent proof artifact is expendable

m Substantially more scalable than explicit proof production in distributed solving
m Unclear if / how well this works for actual LRAT (not LRUP) derivations — especially for clause-sharing solving

m Best of both worlds possible? Full scalability and persistent artifact?

24/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

Wrap-Up

m Proofs: Powerful and practical technology to ensure that a solver’s result is correct
m Proof formats: Trade-off between expressivity, checking efficiency, and solver development effort

m Highly efficient on-the-fly checking is possible if persistent proof artifact is expendable

m Substantially more scalable than explicit proof production in distributed solving
m Unclear if / how well this works for actual LRAT (not LRUP) derivations — especially for clause-sharing solving

m Best of both worlds possible? Full scalability and persistent artifact?

m Right now: Rise of new proof formats (PR, PB, ...) promising shorter proofs for some problems [3]
— DRAT / LRAT is technically just as powerful but relies on variable addition for most powerful proofs

m huge decision space, difficult to find a short proof
m But: recent success in effective structured variable addition [6]

24/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

AT

Recap

Proof Pragmatics & Parallel Proof Technology

m Propositional proof formats in practice
— DRUP, DRAT, LRUP, LRAT
— Time and memory complexity
— Practical implementations

m Proof technology for parallel and distributed SAT solvers
— Constructing monolithic proof files
— Checking reasoning in real-time

Next Up: Applications of SAT solving

m Automated planning
m Bounded Model Checking

25/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving AT

References|

[1]

[2]

[3]

[4]
[5]

[6]

[7]
[8]

[9]

[10]

Jean-Philippe Aumasson und Daniel J. Bernstein. ,SipHash: A Fast Short-Input PRF*. In: Progress in Cryptology - INDOCRYPT 2012. Hrsg. von Steven Galbraith
und Mridul Nandi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, S. 489-508. ISBN: 978-3-642-34931-7. DOI: 10.1007/978-3-642-34931-7_28.

Seulkee Baek, Mario Carneiro und Marijn J. H. Heule. ,A flexible proof format for SAT solver-elaborator communication®. In: Logical Methods in Computer Science 18
(2022).

Tomas Balyo u. a., Hrsg. Proceedings of SAT Competition 2023: Solver, Benchmark and Proof Checker Descriptions. English. Department of Computer Science
Series of Publications B. Finland: Department of Computer Science, University of Helsinki, 2023.

Luis Cruz-Filipe u. a. ,Efficient Certified RAT Verification®. In: Automated Deduction — CADE. Springer, 2017, S. 220-236. DOI: 10.1007/978-3-319-63046-5_14.

Mathias Fleury. ,Optimizing a verified SAT solver®. In: NASA Formal Methods: 11th International Symposium, NFM 2019, Houston, TX, USA, May 7-9, 2019,
Proceedings 11. Springer. 2019, S. 148—-165.

Andrew Haberlandt, Harrison Green und Marijn J. H. Heule. ,Effective Auxiliary Variables via Structured Reencoding®. In: Proc. Theory and Applications of
Satisfiability Testing (SAT). Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2023. bOI: 10.4230/LIPIcs.SAT.2023.11.

Marijn J. H. Heule. ,The DRAT format and DRAT-trim checker®. In: CoRR abs/1610.06229 (2016). arXiv: 1610.06229.

Marijn J. H. Heule, Warren Hunt und Nathan Wetzler. ,Trimming while checking clausal proofs®. In: Proc. FMCAD. |IEEE. 2013, S. 181-188. DOI:
10.1109/fmcad.2013.6679408.

Marijn J. H. Heule, Oliver Kullmann und Victor Marek. ,Solving and verifying the boolean pythagorean triples problem via cube-and-conquer®. In: Proc. Theory and
Applications of Satisfiability Testing (SAT). Springer. 2016, S. 228—-245. DOI: 10.1007/978-3-319-40970-2_15.

Marijn J. H. Heule, Norbert Manthey und Tobias Philipp. ,Validating Unsatisfiability Results of Clause Sharing Parallel SAT Solvers.“. In: Proc. Pragmatics of SAT.
2014, S. 12-25. DOI: 10.29007/6vwg.

26/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.1007/978-3-319-63046-5_14
https://doi.org/10.4230/LIPIcs.SAT.2023.11
https://arxiv.org/abs/1610.06229
https://doi.org/10.1109/fmcad.2013.6679408
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.29007/6vwg

References ||

[11]

[12]

[13]

[14]

[15]

[16]
[17]

Dawn Michaelson u. a. ,Producing Proofs of Unsatisfiability with Distributed Clause-Sharing SAT Solvers®. In: Journal of Automated Reasoning (JAR) 69 (2025). DOI:
10.1007/s10817-025-09725-w.

Dawn Michaelson u. a. ,Unsatisfiability proofs for distributed clause-sharing SAT solvers®. In: Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). 2023, S. 348-366. DOI: 10.1007/978-3-031-30823-9_18.

Florian Pollitt, Mathias Fleury und Armin Biere. ,Faster LRAT checking than solving with CaDiCalL". In: Proc. Theory and Applications of Satisfiability Testing (SAT).
Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2023, 21:1-21:12. DOI: 10.4230/LIPIcs.SAT.2023.21.

Dominik Schreiber. ,Trusted Scalable SAT Solving with on-the-fly LRAT Checking®. In: Theory and Applications of Satisfiability Testing (SAT). 2024, 25:1-25:19. DOI:
10.4230/LIPIcs.SAT.2024.25.

Dominik Schreiber und Peter Sanders. ,MallobSat: Scalable SAT Solving by Clause Sharing“. In: Journal of Artificial Intelligence Research (JAIR) 80 (2024),
S. 1437-1495. pOI: 10.1613/jair.1.15827.

Yong Kiam Tan, Marijn J. H. Heule und Magnus Myreen. ,Verified LRAT and LPR Proof Checking with cake_lpr*. In: SAT Competition. 2023, S. 89.
Allen Van Gelder. ,Verifying RUP Proofs of Propositional Unsatisfiability.“. In: ISAIM. 2008.

27/27 June 30, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving ﬂ(IT

https://doi.org/10.1007/s10817-025-09725-w
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://doi.org/10.4230/LIPIcs.SAT.2024.25
https://doi.org/10.1613/jair.1.15827

	Literatur

