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Recap Lecture 9

Common state-of-the-art proof formats
Pragmatics of proof production and checking
Producing proofs with parallel + distributed solvers
Beyond proof files: on-the-fly checking

Today: Applications I

Why consider applications?
Automated planning: Foundations and SAT-based methods
From planning to checking: Bounded Model Checking basics
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Overview



Result, instance family 1st author Speedups of MALLOBSAT over KISSAT-MAB_HYWALK

SAT Hypertree decomposition Schidler 3, 5, 5, 5, 5, 7, 8, 9, 12, 13
SAT Hamilton circle Heule 4, 4, 7, 11, 17, 20, 21, 22, 24, 31, 33, 36, 42
SAT Tree decomposition Ehlers 5, 7, 87
UNSAT Cellular automatons Chowdhury 5, 8, 8, 9, 9, 10, 22, 22, 66

...
UNSAT Relativized pidgeon hole Elffers 277, 542, 638
UNSAT Bioinformatics Bonet 292, 717
UNSAT Balanced random Spence 321, 388
SAT Sum of three cubes Riveros 384, 509, 1018, 3345
SAT Circuit multiplication Shunyang 17, 31, 32, 62, 105, 119, 213, 254, 393, 741, 746, 1401, 2650
UNSAT Perfect matchings Reeves 119, 413, 12 439, 108 593, 217 099

3072 cores (128 machines) of SuperMUC-NG · 400 problems from Int. SAT Competition 2021
Only instances with seq. time ≥ 60 s · Only families with ≥ 2 instances
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Why consider the Application View? (1/2)



Perform sound algorithm engineering with realistic applications in the loop
Understand application-specific solver behavior, needs, shortcomings
Advance the positive feedback loop between solvers and applications

Design

Analysis

Implementation

Experiments

A
pplications

Realistic models

Real inputs

Performance
guarantees

Libraries

Falsifiable
hypotheses
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Why consider the Application View? (2/2)



hardware verification
cryptography

quasigroup completion

planning

subgraph isomorphism

bitvector

software verification
scheduling

tseitin

miter

pigeon hole

diagnosis
graph coloring

hardware bmc

graph isomorphism

clique coloring

termination analysis

random modularity
fpga routing

polynomial multiplication

rbsat

prime factoring

schur coloring

prime testing

popularity similarity

bioinformatics

auto correlation

edge matching

relativized pigeon hole

stedman triples

cril misc

cellular automata

generic csp

matrix multiplication

hypertree decomposition

sgen

ordering principle

dining philosophers

fixed shape random

pebbling

waerden

fdmus

petrinet concurrency

tree decomposition

argumentation

gray codes

2d strip packing

battleship

parity games

pythagorean triples

minimal disagreement parity

mosoi 289

clique width

erdos discrepancy

hgen

knights problem

sorting networks
grandtour puzzle

cardinality constraints

random clustered

random csp

testpattern generation

influence maximization

minimal superpermutation

hardware model checking

clustered random

bounded model checking

core based generator

ensemble computation

purdom instances

automata synchronization

xor chain

crafted cec
test configuration

rooks

hamiltonian cycle

modcircuits

maxsat optimum

mycielski graph

spectrum repacking

graph based

even coloring

long learned clauses

baseball lineup

relational dependencies

dimacs sorter

puzzle

antibandwidth

at least two sol

mutilated chessboard

coloring

edit distance

equivalence chain

subset cardinality

finite state machines

sliding puzzle

perfect matching

circuit multiplierhidoku

sum of 3 cubes

tournament

software bmc

phnf

social golfer

theorem proving

discrete logarithm

lam discrete geometry

genurq

greentao

rubikcube

product configuration

cover

random mus

chessboard coloring

ramseycube

alloy vpn models

stone

misc satex

cnf miter
random

linvrinv

ktf

random hiddenmodel

sgen balanced

railway safety

fermat

maximum constraint partition

hanoi

karatsuba multiplication

01 integer programming

ramsey

circuit minimization

tensors

design debugging

ssp 0

glassy gen

philips

5355 problems,
138 families + 72 unknown

Font size ∝ # problems

via wordclouds.com,
GBD

(benchmark-database.de)
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SAT Competition Benchmarks – “Real” Applications?

wordclouds.com
benchmark-database.de


Classical Automated Planning in a Nutshell

Given a set of world features, an according initial world state, and a set of conditional rules to modify the world state
(“actions”), find a way to successively transform the initial world state until it satisfies some goal condition.

Properties of (classical) automated planning:
Deterministic, full-knowledge, closed-world [12] (“everything not explicitly true is assumed false”)
Extremely generic “state transition system” model
– essentially shortest path search but on a prohibitively large graph that must be generated on the go
PSPACE-complete [3] – solutions may need to be exponentially long
Applications of classical planning models mostly limited to highly idealized/simplified settings
– But: Ideal “fruitfly problem” for considering interactions of applications with SAT solving
Tons of extensions, enhancements, variants
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Automated Planning: Introduction



Planning Problem (semi formal, simplified PDDL-style)

A planning problem is a tuple P := (sI,A,g), where sI and g are sets of consistent propositional world state features
(each true or false) and A is a set of actions. Each action has the shape a = (prea,effa), where prea and effa are also
sets of consistent propositional world state features. The objective is to find a plan Π = ⟨a1, . . . ,an⟩ such that each
preak is satisfied by sk := (sI updated by effa1, . . . ,effak−1) and g is satisfied by the final arising state sn+1.

Example: Sokoban [5]

World state features: Positions of walls, boxes, goals, player
Actions: Walk and push. E.g., push-right(x, y):

Preconditions: player-at(x,y), box-at(x+1,y), ¬wall-at(x+2,y),
¬box-at(x+2,y)

Effects: player-at(x+1,y), ¬box-at(x+1,y), box-at(x+2,y)

Goal: box-at(x∗,y∗) for each marked location (x∗, y∗)

Plan: Series of move/push actions leading to a goal state

7/16 July 7, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Automated Planning: Definitions
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Automated Planning: Definitions



How do we solve planning problems?
Most common: Forward state space search [8] – explore state space while heuristically closing in on a goal state
More exotic: Backward search, plan-space search (not discussed here)
Old and robust (since 1992 [10]): SAT-based planning

(How) Can we encode planning problems into SAT?
We cannot translate planning to a single polynomially sized SAT encoding (NP vs. PSPACE?)
– Unclear how many steps to encode!
We can translate planning to a compact SAT encoding for a fixed number of K steps
⇒ Incrementally increase K until plan is found!
Main aspects of design space: Used SAT encoding, Scheduling strategies for values of K
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Automated Planning



1. The initial state has to hold at time 0: (Assume sI explicitly defines all relevant/reachable propositions)

∀ℓ ∈ sI : ℓ(0)

2. Apply at most one action at each time: (Optionally also add “At least one action”)

∀t ∈ {0, . . . ,K} ∀a,a′ ∈ A : ¬a(t) ∨ ¬a′(t)

3. Applying an action at time t implies its preconditions at time t :

∀t ∈ {0, . . . ,K} ∀a ∈ A ∀ℓ ∈ prea : a(t) → ℓ(t)

4. Applying an action at time t implies its effects at time t + 1:

∀t ∈ {0, . . . ,K} ∀a ∈ A ∀ℓ ∈ effa : a(t) → ℓ(t+1)

5. Each goal has to hold at time K :
∀ℓ ∈ g : ℓ(K )
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Automated Planning: A SAT Encoding [9] (1/2)



We are done, right?

⇒ Sokoban example: SAT Solver finds solution at K = 1, where boxes magically materialize at all goal spots.
What did we forget?

6. Frame axioms: A state feature only changes if an action supports this change:

∀t ∈ {0, . . . ,K − 1} ∀ℓ ∈ sI ∪ s̄I : ℓ̄(t) ∧ ℓ(t+1) →
∨

a∈A | ℓ∈effa

a(t)

Proposition

Using clause rules 1–6, encoding a planning problem P to SAT for some fixed K ≥ 0 yields a satisfiable CNF formula
if and only if there exists a plan Π for P with at most K steps.
Such a Π can be decoded from a model by reading the satisfying assignment to the variables a(t).
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Automated Planning: A SAT Encoding (2/2)
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Automated Planning: A SAT Encoding (2/2)



Improvements to SAT-based planning
More efficient encodings, in particular for 2. (“at most one action”)
Relaxed semantics: Execute several actions at once (e.g., [1])
Exploit incremental SAT solving! [7]

Encode 1. initially
Encode 2.,3.,4.,6. at every new increment
Enforce 5. (“goal reached”) as temporary assumptions at each SAT call

Find more effective sequences of values for K to test
(“makespan scheduling”) [13]

Try to bypass unsurmountable wall of exceedingly difficult K (esp. UNSAT)
Increase K linearly, exponentially, . . .
Test several K in parallel
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SAT Planning



Let’s use our SAT-based planning to check the correctness of a system!
World state features ≡ State features of our system
Actions ≡ Valid transitions between states
Goals ≡

incorrect state, violating some constraint
Plan ≡

reachable incorrectness

Unsatisfiability ≡

Bounded Model Checking

Encode and check transition system for k = 1,2, . . .
Satisfying assignment ≡ counter example!
Crucial tool for hardware and software verification [14]

!

A snack machine or an electronic
component or a C program or . . .
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From Planning to Verification?
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Let’s use our SAT-based planning to check the correctness of a system!
World state features ≡ State features of our system
Actions ≡ Valid transitions between states
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From Planning to Verification?



Invented by Clarke & Biere in ∼2000 [4], mostly replacing
BDD-based model checking
State transition system based on temporal logic
(LTL, CTL, . . . ); solving via SAT or SMT
Applications: Computer-aided design (CAD), software verification,
invariant checking, bug detection, . . . [14]

One of the most essential real-world applications of SAT
Pushed industrial interest in SAT solvers in 2000s
Actively influenced solver design and algorithms
Some of the largest, structurally most distinct benchmarks

Examples for BMC @ KIT:
Low-Level Bounded Model Checker (LLBMC) [6]
(C program verification)
Verification of Java contracts [2] (see right)
Cryptography [11]
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Bounded Model Checking
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Bounded Model Checking



Applications I – Planning & Checking

Why consider applications?

Automated planning: Foundations and SAT-based methods

From planning to checking: Bounded Model Checking basics

Next Up: Applications II – Highlights

Electronic design
Cryptanalysis
Path finding and scheduling
. . .
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Recap
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