

Practical SAT Solving

Lecture 11 – Application Highlights Markus Iser, <u>Dominik Schreiber</u> | July 14, 2025

Overview

Selected (!) Application Highlights of SAT

- Recap: Planning
- Bounded Model Checking
- Combinational Equivalence Checking
- Analyzing Cryptographic Building Blocks
- Multi Agent Path Finding
- Explainable AI: Learning decision trees
- Train scheduling with disruptions via MaxSAT

Why consider the Application View? (1/2)

Result,	instance family	1st author	Speedups of MALLOBSAT over KISSAT-MAB_HYWALK
SAT	Hypertree decomposition	Schidler	3, 5, 5, 5, 5, 7, 8, 9, 12, 13
SAT	Hamilton circle	Heule	4, 4, 7, 11, 17, 20, 21, 22, 24, 31, 33, 36, 42
SAT UNSAT	Tree decomposition Cellular automatons	Ehlers Chowdhury	5, 7, 87 5, 8, 8, 9, 9, 10, 22, 22, 66
UNSAT	Relativized pidgeon hole	Elffers	277, 542, 638
UNSAT	Bioinformatics	Bonet	292, 717
UNSAT	Balanced random	Spence	321, 388
SAT	Sum of three cubes	Riveros	384, 509, 1018, 3345
SAT	Circuit multiplication	Shunyang	17, 31, 32, 62, 105, 119, 213, 254, 393, 741, 746, 1401, 2650
UNSAT	Perfect matchings	Reeves	119, 413, 12 439, 108 593, 217 099

3072 cores (128 machines) of SuperMUC-NG · 400 problems from Int. SAT Competition 2021

Only instances with seq. time \geq 60 s \cdot Only families with \geq 2 instances

Why consider the Application View? (2/2)

- Perform sound algorithm engineering with realistic applications in the loop
- Understand application-specific solver behavior, needs, shortcomings
- Advance the positive feedback loop between solvers and applications

SAT Competition Benchmarks – "Real" Applications?

5355 problems, 138 families + 72 unknown Font size \propto # problems via wordclouds.com, GBD (benchmark-database.de)

Recap: Planning

World state s: Set of Boolean features

- Assert initial state s_l via unit clauses for time step 0
- Assert goal state features g via unit clauses for time step k
- **Action**: Template for valid state transitions $s_x \rightsquigarrow s_{x+1}$
 - Executing an action at step *k* implies its preconditions at step *k*
 - Executing an action at step k implies its effects at step k + 1
- **Plan**: Valid sequence of actions leading from *s*₁ to a goal state
 - Sequence of action variables set to true in satisfying assignment
- Anything else to encode?

Recap: Planning

World state s: Set of Boolean features

- Assert initial state s_l via unit clauses for time step 0
- Assert goal state features g via unit clauses for time step k
- **Action**: Template for valid state transitions $s_x \rightsquigarrow s_{x+1}$
 - Executing an action at step *k* implies its preconditions at step *k*
 - Executing an action at step k implies its effects at step k + 1
- **Plan**: Valid sequence of actions leading from *s*₁ to a goal state
 - Sequence of action variables set to true in satisfying assignment

Anything else to encode? Frame axioms – don't let the solver hallucinate causeless state changes!

Let's use our SAT-based planning to check the correctness of a system!

- \blacksquare World state features \equiv State features of our system
- Actions \equiv Valid transitions between states
- $\blacksquare \ Goals \equiv$

Let's use our SAT-based planning to check the correctness of a system!

- \blacksquare World state features \equiv State features of our system
- Actions \equiv Valid transitions between states
- Goals \equiv incorrect state, violating some constraint
- Plan \equiv

Let's use our SAT-based planning to check the correctness of a system!

- \blacksquare World state features \equiv State features of our system
- Actions = Valid transitions between states
- Goals \equiv incorrect state, violating some constraint
- Plan = reachable incorrectness
- Unsatisfiability = system is always correct?

Let's use our SAT-based planning to check the correctness of a system!

- \blacksquare World state features \equiv State features of our system
- Actions = Valid transitions between states
- Goals \equiv incorrect state, violating some constraint
- Plan = reachable incorrectness
- Unsatisfiability at k steps \equiv system is correct within k steps

Let's use our SAT-based planning to check the correctness of a system!

- \blacksquare World state features \equiv State features of our system
- Actions = Valid transitions between states
- Goals \equiv incorrect state, violating some constraint
- Plan = reachable incorrectness
- Unsatisfiability at k steps \equiv system is correct within k steps

Bounded Model Checking

- Encode and check transition system for k = 1, 2, ...
- Satisfying assignment = counter example!
- Crucial tool for hardware and software verification [19]

Bounded Model Checking

- Invented by Clarke & Biere in ~2000 [3], mostly replacing BDD-based model checking
- State transition system based on temporal logic (LTL, CTL, ...); solving via SAT or SMT
- Applications: Computer-aided design (CAD), software verification, invariant checking, bug detection, ... [19]

Bounded Model Checking

- Invented by Clarke & Biere in ~2000 [3], mostly replacing BDD-based model checking
- State transition system based on temporal logic (LTL, CTL, ...); solving via SAT or SMT
- Applications: Computer-aided design (CAD), software verification, invariant checking, bug detection, ... [19]
- One of the most essential real-world applications of SAT
 - Pushed industrial interest in SAT solvers in 2000s
 - Actively influenced solver design and algorithms
 - Some of the largest, structurally most distinct benchmarks

Bounded Model Checking

- Invented by Clarke & Biere in ~2000 [3], mostly replacing BDD-based model checking
- State transition system based on temporal logic (LTL, CTL, ...); solving via SAT or SMT
- Applications: Computer-aided design (CAD), software verification, invariant checking, bug detection, ... [19]
- One of the most essential real-world applications of SAT
 - Pushed industrial interest in SAT solvers in 2000s
 - Actively influenced solver design and algorithms
 - Some of the largest, structurally most distinct benchmarks

Examples for BMC @ KIT:

- Low-Level Bounded Model Checker (LLBMC) [5] (C program verification)
- Verification of Java contracts [1] (see right)
- Cryptography [8]


```
/*@ requires 0 <= x1;
@ ensures \result == x1 * x2;
@ assignable \nothing;
@*/
public int mult(int x1, int x2) {
    int res = 0;
    /*@ loop_invariant 0 <= i && i <= x1 && res == i * x2;
    @ decreases x1 - i;
    @ assignable \nothing;
    @*/
    for (int i = 0; i < x1; ++i) res += x2;
    return res;
}
```


Combinational Equivalence Checking

- Given: two combinational circuits stateless "input→output" circuit, no feedback
- Question: are the circuits logically equivalent?
- Right example: Is $F(a, b, c) \equiv G(a, b, c)$?
- How to solve with SAT?

Combinational Equivalence Checking

- Given: two combinational circuits stateless "input→output" circuit, no feedback
- Question: are the circuits logically equivalent?
- Right example: Is $F(a, b, c) \equiv G(a, b, c)$?
- How to solve with SAT?

Miter Formula

Encode *F*, *G* relative to shared input bits
Assert *x* ≠ *y* (multi-bit output: \(\not \color x_i, y_i \color t_i \neq y_i\))
Satisfiable ⇔ (*F* ≠ *G*) (why this way?)

CEC: How Hard Can It Be?

Two Miter examples from SAT Competition 2023

- Instance A: 260k variables, 850k clauses
 - Circuits are not equivalent
 - Solved in 1.33 s by KISSAT_MAB_PROP-NO_SYM [7]

Nodes = variables; Edges = common clause(s); variables contracted by factor ≈ 16

CEC: How Hard Can It Be?

Two Miter examples from SAT Competition 2023

- Instance A: 260k variables, 850k clauses
 - Circuits are not equivalent
 - Solved in 1.33 s by KISSAT_MAB_PROP-NO_SYM [7]
- Instance B: 4k variables, 13k clauses
 - Circuits are equivalent
 - Unsolved by sequential solvers within 5000 s
 - Solved by some parallel solvers :)

CEC: How Hard Can It Be?

Two Miter examples from SAT Competition 2023

- Instance A: 260k variables, 850k clauses
 - Circuits are not equivalent
 - Solved in 1.33 s by KISSAT_MAB_PROP-NO_SYM [7]
- Instance B: 4k variables, 13k clauses
 - Circuits are equivalent
 - Unsolved by sequential solvers within 5000 s
 - Solved by some parallel solvers :)

Generally: co-NP-complete, can require very large proofs

Improving CEC performance: Try to merge equivalent subcircuits

Randomly test different inputs, collecting pairs of potentially equivalent nodes

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging
- Structural hashing: Ensure that each functionally distinct sub-circuit is encoded only once

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging
- Structural hashing: Ensure that each functionally distinct sub-circuit is encoded only once
- SAT sweeping: Use SAT sub-program to test whether potentially equivalent nodes are actually equivalent

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging
- Structural hashing: Ensure that each functionally distinct sub-circuit is encoded only once
- SAT sweeping: Use SAT sub-program to test whether potentially equivalent nodes are actually equivalent

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging
- Structural hashing: Ensure that each functionally distinct sub-circuit is encoded only once
- SAT sweeping: Use SAT sub-program to test whether potentially equivalent nodes are actually equivalent

- Randomly test different inputs, collecting pairs of potentially equivalent nodes
- Use And/Inverter-Graph (AIG) for simple circuit manipulation and merging
- Structural hashing: Ensure that each functionally distinct sub-circuit is encoded only once
- SAT sweeping: Use SAT sub-program to test whether potentially equivalent nodes are actually equivalent

CEC: Remarks

Important cornerstone of Electronic Design Automation [13]

- can be used to validate implementation based on specification
- other EDA techniques: model checking, Automated Test Pattern Generation (ATPG)
- Crucial "intrinsically Boolean" benchmark problem throughout history of SAT solving
 - Every SAT competition features miters
- SAT sweeping originally proposed for bounded model checking [9]
- Gate recognition and merging now a form of general inprocessing for any formula, connected to variable elimination [2]

Analyzing Cryptographic Building Blocks

Cryptanalysis = analyze, attempt to "break" cryptographic building blocks to test, advance them

- Building blocks: Stream ciphers ((msg,key) \mapsto encrypted msg) [17], hash functions [4], ...
- Algebraic cryptanalysis: try to build equations relating output to input [17]
 - SAT solver should support XOR clauses
 - SAT solver should use Gaussian Elimination as a sub-program

Analyzing Cryptographic Building Blocks

Cryptanalysis = analyze, attempt to "break" cryptographic building blocks to test, advance them

- Building blocks: Stream ciphers ((msg,key) \mapsto encrypted msg) [17], hash functions [4], ...
- Algebraic cryptanalysis: try to build equations relating output to input [17]
 - SAT solver should support XOR clauses
 - SAT solver should use Gaussian Elimination as a sub-program
- Established SAT-based approaches:
 - Prove mathematical properties of internal states [4]
 - Find weak keys and preimages [10]
 - Find collisions of hash functions [14]

Analyzing Cryptographic Building Blocks

Cryptanalysis = analyze, attempt to "break" cryptographic building blocks to test, advance them

- Building blocks: Stream ciphers ((msg,key) \mapsto encrypted msg) [17], hash functions [4], ...
- Algebraic cryptanalysis: try to build equations relating output to input [17]
 - SAT solver should support XOR clauses
 - SAT solver should use Gaussian Elimination as a sub-program
- Established SAT-based approaches:
 - Prove mathematical properties of internal states [4]
 - Find weak keys and preimages [10]
 - Find collisions of hash functions [14]
- Cross-application use of SAT techniques:
 - Cryptanalysis via SMT solving [22]
 - Cryptanalysis via bounded model checking [12]
 - Hash function analysis also used in algorithm design [21]

"it turns out that the highly combinatorial nature of the problem is not well suited for linear solvers, and that SAT solvers are a better fit for this type of problem" —Dobraunig et al. after trying MILP for ASCON [4]

- Discretized 2D grid of positions, *n* cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position

- Discretized 2D grid of positions, n cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

- Discretized 2D grid of positions, n cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

- Discretized 2D grid of positions, *n* cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

- Discretized 2D grid of positions, *n* cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

- Discretized 2D grid of positions, *n* cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

- Discretized 2D grid of positions, n cooperative agents
- Discretized time steps: move 0-1 cells per time step
- Per agent: Initial position and goal position
- Collisions disallowed
- Optimize makespan (= steps until all goals reached) or Sum of Costs (= total number of actions performed)

Optimal Approaches to MAPF

- M* algorithm: adjusted A* with collision handling and backtracking
- Conflict Based Search (CBS): route individually; at collision, add constraint to a colliding agent and re-route
- Reduction-based approaches: SAT, MaxSAT, ASP, CSP

Is SAT-based MAPF worthwhile?

Observation on MAPF [18] (and planning, and scheduling, and probably many other problems ...):

Direct search-based approaches perform especially well on large, lightly constrained instances.

SAT-based approaches

perform especially well on small-sized, highly constrained instances.

13	7	2	4
3	8	15	5
9	12	1	6
14	11	10	

Explainable AI: Learning Decision Trees

- Given: n d-dimensional sample vectors (d features) mapped to a (binary) class
- Task: Learn decision tree classifying all samples
- Explainable classifier (the more shallow the better)

taken from [16]

Explainable AI: Learning Decision Trees

- Given: n d-dimensional sample vectors (d features) mapped to a (binary) class
- Task: Learn decision tree classifying all samples
- Explainable classifier (the more shallow the better)

SAT-based approach [15]

- Encode complete binary tree of depth k
- Encode recursively for each node which samples are excluded along its path
- Constrain that 0-leaves exclude all 1-labeled samples and vice versa
- Solver picks a sub-tree and each node's feature

taken from [16]

SAT-based Improvement of Decision Trees [16]

- SAT-based approach slow/infeasible for large data sets
- Better: Construct initial decision tree heuristically, then locally improve sub-trees via SAT
 - **Hybrid approach**, also beneficial in other contexts, e.g., CEC, planning [6]
- Enables to scale up merits of SAT to arbitrarily large data sets

taken from [16]

More on SAT Solving \times Machine Learning

Algorithm selection

Xu, Lin, et al. "SATzilla: portfolio-based algorithm selection for SAT." JAIR 2008.

Eggensperger, Katharina, Marius Lindauer, and Frank Hutter. "Neural networks for predicting algorithm runtime distributions." IJCAI 2018.

SAT Solving featuring ML techniques

Liang, Jia Hui, et al. "Learning rate based branching heuristic for SAT solvers." SAT 2016. Guo, Wenxuan, et al. "Machine learning methods in solving the boolean satisfiability problem." Machine Intelligence Research (2023).

Verify Neural Networks via SAT/SMT solving

Huang, Xiaowei, et al. "Safety verification of deep neural networks." CAV 2017. Ehlers, Ruediger. "Formal verification of piece-wise linear feed-forward neural networks." ATVA 2017.

Analyze and understand behavior of SAT solvers and instances

Soos, Mate, Raghav Kulkarni, and Kuldeep S. Meel. "CrystalBall: gazing in the black box of SAT solving." SAT 2019. Fuchs, Tobias, Jakob Bach, and Markus Iser. "Active Learning for SAT Solver Benchmarking." TACAS 2023.

Can SAT Solving fix the Deutsche Bahn?

Can SAT Solving fix the Deutsche Bahn? No.

Can SAT Solving fix the Deutsche Bahn? No. But it might make the Swiss trains run even better!

Train Scheduling Optimization Problem (TSOP)

- Route trains through predefined stations
- Schedule train timetable subject to time and resource constraints

taken from [11]

Train Scheduling Optimization Problem (TSOP)

- Route trains through predefined stations
- Schedule train timetable subject to time and resource constraints

TSOP Under Disruption (TSOPUD)

- Numerous disruptions: slowdown, train blocked, track blocked, staffing / rolling stock
- Reroute, reschedule to minimize delays

taken from [11]

Train Scheduling Optimization Problem (TSOP)

- Route trains through predefined stations
- Schedule train timetable subject to time and resource constraints

TSOP Under Disruption (TSOPUD)

- Numerous disruptions: slowdown, train blocked, track blocked, staffing / rolling stock
- Reroute, reschedule to minimize delays

MaxSAT-based approach

- Encode time requirements as hard clauses, route/train cost as soft clauses
- Relax timings incrementally until feasible
- Add disruption(s), relax timings as needed

taken from [11]

Application Highlights: Takeaways

SAT is an essential and well-established tool particularly for

- software & hardware verification
- electronic design automation
- security and cryotography

Indicators for a problem to best use SAT for?

- large portion of "intrinsically Boolean" constraints
- combinatorial search space / set of decisions, NP-hard (or harder)
- problem description not too large
- Cross-application techniques and insights:
 - Often promising to hybridize SAT with direct (search) methods: use SAT to resolve difficult cores
 - Positive feedback loop between solver techniques and applications
 - Cross-fertilization between different applications (e.g., BMC, SMT)
 - More often than not, incremental and iterative approaches are needed

Next lecture: SMT Solving

- Satisfiability Modulo Theories (SMT) basics and important theories
- SMT solving paradigms: lazy vs. eager approach
- Brief look at SMT-Lib

References I

- [1] Bernhard Beckert u. a. "Modular verification of JML contracts using bounded model checking". In: Int. Symposium on Leveraging Applications of Formal Methods (ISoLA). Springer. 2020, S. 60–80.
- [2] Armin Biere und Mathias Fleury. "Gimsatul, IsaSAT, Kissat Entering the SAT Competition 2022". In: SAT Competition. http://hdl.handle.net/10138/359079. 2022, S. 10–11.
- [3] Edmund Clarke u. a. "Bounded model checking using satisfiability solving". In: *Formal methods in system design* 19 (2001), S. 7–34. DOI: 10.1023/A:1011276507260.
- [4] Christoph Dobraunig u. a. "Cryptanalysis of ascon". In: *Topics in Cryptology—CT-RSA 2015: The Cryptographer's Track at the RSA Conference 2015, San Francisco, CA, USA, April 20-24, 2015. Proceedings*. Springer. 2015, S. 371–387.
- [5] Stephan Falke, Florian Merz und Carsten Sinz. "The bounded model checker LLBMC". In: 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE. 2013, S. 706–709.
- [6] Nils Froleyks, Tomáš Balyo und Dominik Schreiber. "PASAR—Planning as Satisfiability with Abstraction Refinement". In: *Proc. SoCS*. Bd. 10. 1. 2019, S. 70–78. URL: https://ojs.aaai.org/index.php/S0CS/article/download/18504/18295.
- [7] Yu Gao. "Kissat_MAB_prop in SAT Competition 2023". In: SAT Competition. 2023, S. 16.
- [8] Alexander Koch, Michael Schrempp und Michael Kirsten. "Card-based cryptography meets formal verification". In: *New Generation Computing* 39.1 (2021), S. 115–158. DOI: 10.1007/s00354-020-00120-0.
- [9] Andreas Kuehlmann. "Dynamic transition relation simplification for bounded property checking". In: *IEEE/ACM International Conference on Computer Aided Design*, 2004. *ICCAD-2004*. IEEE. 2004, S. 50–57.

References II

- [10] Frédéric Lafitte, Jorge Nakahara Jr und Dirk Van Heule. "Applications of SAT solvers in cryptanalysis: finding weak keys and preimages". In: *Journal on Satisfiability, Boolean Modeling and Computation* 9.1 (2014), S. 1–25. DOI: 10.3233/sat190099.
- [11] Alexandre Lemos u. a. "Iterative Train Scheduling under Disruption with Maximum Satisfiability". In: *Journal of Artificial Intelligence Research* 79 (2024), S. 1047–1090.
- [12] Norbert Manthey. "Testing the ASCON Hash Function". In: *SAT Competition*. 2023, S. 63.
- [13] João P. Marques-Silva und Karem A. Sakallah. "Boolean satisfiability in electronic design automation". In: *Proc. Design Automation Conference*. 2000, S. 675–680. DOI: 10.1145/337292.337611.
- [14] Ilya Mironov und Lintao Zhang. "Applications of SAT solvers to cryptanalysis of hash functions". In: *Theory and Applications of Satisfiability Testing-SAT 2006: 9th International Conference, Seattle, WA, USA, August 12-15, 2006. Proceedings 9.* Springer. 2006, S. 102–115.
- [15] Nina Narodytska u. a. "Learning optimal decision trees with SAT". In: Int. Joint Conf.s on AI (IJCAI). 2018, S. 1362–1368. DOI: 10.24963/ijcai.2018/189.
- [16] André Schidler und Stefan Szeider. "SAT-based decision tree learning for large data sets". In: AAAI Conference on Artificial Intelligence. Bd. 35. 5. 2021, S. 3904–3912. DOI: 10.1609/aaai.v35i5.16509.
- [17] Mate Soos, Karsten Nohl und Claude Castelluccia. "Extending SAT Solvers to Cryptographic Problems". In: *Theory and Applications of Satisfiability Testing (SAT)*. Springer. 2009, S. 244–257. DOI: 10.1007/978-3-642-02777-2_24.
- [18] Pavel Surynek u. a. "Migrating Techniques from Search-Based Multi-Agent Path Finding Solvers to SAT-Based Approach". In: *JAIR* 73 (2022), S. 553–618. DOI: 10.1613/jair.1.13318.
- [19] Yakir Vizel, Georg Weissenbacher und Sharad Malik. "Boolean Satisfiability Solvers and Their Applications in Model Checking". In: *IEEE*. Bd. 103. 11. 2015, S. 2021–2035. DOI: 10.1109/JPR0C.2015.2455034.

References III

- [20] Sean Weaver. *Equivalence Checking*. https://www21.in.tum.de/~lammich/2015_SS_Seminar_SAT/resources/Equivalence_Checking_11_30_08.pdf. 2015.
- [21] Sean Weaver und Marijn J. H. Heule. "Constructing minimal perfect hash functions using SAT technology". In: AAAI Conference on Artificial Intelligence. Bd. 34. 02. 2020, S. 1668–1675. DOI: 10.1609/aaai.v34i02.5529.
- [22] Wenqian Xin u. a. "Improved cryptanalysis on SipHash". In: International Conference on Cryptology and Network Security. Springer. 2019, S. 61–79.

