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Selected (!) Application Highlights of SAT

Recap: Planning
Bounded Model Checking
Combinational Equivalence Checking
Analyzing Cryptographic Building Blocks
Multi Agent Path Finding
Explainable AI: Learning decision trees
Train scheduling with disruptions via MaxSAT
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Overview



Result, instance family 1st author Speedups of MALLOBSAT over KISSAT-MAB_HYWALK

SAT Hypertree decomposition Schidler 3, 5, 5, 5, 5, 7, 8, 9, 12, 13
SAT Hamilton circle Heule 4, 4, 7, 11, 17, 20, 21, 22, 24, 31, 33, 36, 42
SAT Tree decomposition Ehlers 5, 7, 87
UNSAT Cellular automatons Chowdhury 5, 8, 8, 9, 9, 10, 22, 22, 66

...
UNSAT Relativized pidgeon hole Elffers 277, 542, 638
UNSAT Bioinformatics Bonet 292, 717
UNSAT Balanced random Spence 321, 388
SAT Sum of three cubes Riveros 384, 509, 1018, 3345
SAT Circuit multiplication Shunyang 17, 31, 32, 62, 105, 119, 213, 254, 393, 741, 746, 1401, 2650
UNSAT Perfect matchings Reeves 119, 413, 12 439, 108 593, 217 099

3072 cores (128 machines) of SuperMUC-NG · 400 problems from Int. SAT Competition 2021
Only instances with seq. time ≥ 60 s · Only families with ≥ 2 instances
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Why consider the Application View? (1/2)



Perform sound algorithm engineering with realistic applications in the loop
Understand application-specific solver behavior, needs, shortcomings
Advance the positive feedback loop between solvers and applications

Design

Analysis

Implementation

Experiments

A
pplications

Realistic models

Real inputs

Performance
guarantees

Libraries

Falsifiable
hypotheses
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Why consider the Application View? (2/2)



hardware verification
cryptography

quasigroup completion

planning

subgraph isomorphism

bitvector

software verification
scheduling

tseitin

miter

pigeon hole

diagnosis
graph coloring

hardware bmc

graph isomorphism

clique coloring

termination analysis

random modularity
fpga routing

polynomial multiplication

rbsat

prime factoring

schur coloring

prime testing

popularity similarity

bioinformatics

auto correlation

edge matching

relativized pigeon hole

stedman triples

cril misc

cellular automata

generic csp

matrix multiplication

hypertree decomposition

sgen

ordering principle

dining philosophers

fixed shape random

pebbling

waerden

fdmus

petrinet concurrency

tree decomposition

argumentation

gray codes

2d strip packing

battleship

parity games

pythagorean triples

minimal disagreement parity

mosoi 289

clique width

erdos discrepancy

hgen

knights problem

sorting networks
grandtour puzzle

cardinality constraints

random clustered

random csp

testpattern generation

influence maximization

minimal superpermutation

hardware model checking

clustered random

bounded model checking

core based generator

ensemble computation

purdom instances

automata synchronization

xor chain

crafted cec
test configuration

rooks

hamiltonian cycle

modcircuits

maxsat optimum

mycielski graph

spectrum repacking

graph based

even coloring

long learned clauses

baseball lineup

relational dependencies

dimacs sorter

puzzle

antibandwidth

at least two sol

mutilated chessboard

coloring

edit distance

equivalence chain

subset cardinality

finite state machines

sliding puzzle

perfect matching

circuit multiplierhidoku

sum of 3 cubes

tournament

software bmc

phnf

social golfer

theorem proving

discrete logarithm

lam discrete geometry

genurq

greentao

rubikcube

product configuration

cover

random mus

chessboard coloring

ramseycube

alloy vpn models

stone

misc satex

cnf miter
random

linvrinv

ktf

random hiddenmodel

sgen balanced

railway safety

fermat

maximum constraint partition

hanoi

karatsuba multiplication

01 integer programming

ramsey

circuit minimization

tensors

design debugging

ssp 0

glassy gen

philips

5355 problems,
138 families + 72 unknown

Font size ∝ # problems

via wordclouds.com,
GBD

(benchmark-database.de)

5/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SAT Competition Benchmarks – “Real” Applications?

wordclouds.com
benchmark-database.de


World state s: Set of Boolean features
Assert initial state sI via unit clauses for time step 0
Assert goal state features g via unit clauses for time step k

Action: Template for valid state transitions sx ⇝ sx+1
Executing an action at step k implies its preconditions at step k
Executing an action at step k implies its effects at step k + 1

Plan: Valid sequence of actions leading from sI to a goal state
Sequence of action variables set to true in satisfying assignment

Anything else to encode?

Frame axioms – don’t let the solver hallucinate causeless state changes!

sI . . .
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Recap: Planning



Let’s use our SAT-based planning to check the correctness of a system!
World state features ≡ State features of our system
Actions ≡ Valid transitions between states
Goals ≡

incorrect state, violating some constraint
Plan ≡

reachable incorrectness

Unsatisfiability ≡

Bounded Model Checking

Encode and check transition system for k = 1,2, . . .
Satisfying assignment ≡ counter example!
Crucial tool for hardware and software verification [19]

!

A snack machine or an electronic
component or a C program or . . .
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From Planning to Verification?
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Let’s use our SAT-based planning to check the correctness of a system!
World state features ≡ State features of our system
Actions ≡ Valid transitions between states
Goals ≡ incorrect state, violating some constraint
Plan ≡ reachable incorrectness
Unsatisfiability ≡ system is always correct?

Bounded Model Checking

Encode and check transition system for k = 1,2, . . .
Satisfying assignment ≡ counter example!
Crucial tool for hardware and software verification [19]

!

A snack machine or an electronic
component or a C program or . . .
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Let’s use our SAT-based planning to check the correctness of a system!
World state features ≡ State features of our system
Actions ≡ Valid transitions between states
Goals ≡ incorrect state, violating some constraint
Plan ≡ reachable incorrectness
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Bounded Model Checking

Encode and check transition system for k = 1,2, . . .
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From Planning to Verification?



Invented by Clarke & Biere in ∼2000 [3], mostly replacing
BDD-based model checking

State transition system based on temporal logic
(LTL, CTL, . . . ); solving via SAT or SMT

Applications: Computer-aided design (CAD), software verification,
invariant checking, bug detection, . . . [19]

One of the most essential real-world applications of SAT
Pushed industrial interest in SAT solvers in 2000s
Actively influenced solver design and algorithms
Some of the largest, structurally most distinct benchmarks

Examples for BMC @ KIT:
Low-Level Bounded Model Checker (LLBMC) [5]
(C program verification)
Verification of Java contracts [1] (see right)
Cryptography [8]
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Bounded Model Checking
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Bounded Model Checking



Given: two combinational circuits
stateless “input→output” circuit, no feedback
Question: are the circuits logically equivalent?
Right example: Is F (a,b, c) ≡ G(a,b, c)?
How to solve with SAT?

Miter Formula

Encode F , G relative to shared input bits
Assert x ̸= y (multi-bit output:

∨
xi ,yi

xi ̸= yi)
Satisfiable ⇔ (F ̸≡ G) (why this way?)

a
b

c

x

"AND"

"NAND"

a

b
"OR""NOT"

c

y

F

G
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Combinational Equivalence Checking



Given: two combinational circuits
stateless “input→output” circuit, no feedback
Question: are the circuits logically equivalent?
Right example: Is F (a,b, c) ≡ G(a,b, c)?
How to solve with SAT?

Miter Formula

Encode F , G relative to shared input bits
Assert x ̸= y (multi-bit output:

∨
xi ,yi

xi ̸= yi)
Satisfiable ⇔ (F ̸≡ G) (why this way?)

a
b
c

x

"AND"

"NAND"

"OR""NOT"
y

F

G
"XOR"

F
(a

,b
,c

)̸=
G

(a
,b

,c
)
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Combinational Equivalence Checking



Two Miter examples from SAT Competition 2023
Instance A: 260k variables, 850k clauses

Circuits are not equivalent
Solved in 1.33 s by KISSAT_MAB_PROP-NO_SYM [7]

Instance B: 4k variables, 13k clauses
Circuits are equivalent
Unsolved by sequential solvers within 5000 s
Solved by some parallel solvers :)

Generally: co-NP-complete, can require very large proofs

Nodes = variables;
Edges = common clause(s);

variables contracted by factor ≈ 16
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CEC: How Hard Can It Be?
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Improving CEC performance: Try to merge equivalent sub-
circuits

Randomly test different inputs, collecting pairs of
potentially equivalent nodes

Use And/Inverter-Graph (AIG) for simple circuit
manipulation and merging
Structural hashing: Ensure that each functionally
distinct sub-circuit is encoded only once
SAT sweeping: Use SAT sub-program to test whether
potentially equivalent nodes are actually equivalent

a
b

c

x

"AND"

"NAND"

a

b
"OR""NOT"

c

y

F

G
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CEC Techniques [20]
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Improving CEC performance: Try to merge equivalent sub-
circuits

Randomly test different inputs, collecting pairs of
potentially equivalent nodes
Use And/Inverter-Graph (AIG) for simple circuit
manipulation and merging
Structural hashing: Ensure that each functionally
distinct sub-circuit is encoded only once
SAT sweeping: Use SAT sub-program to test whether
potentially equivalent nodes are actually equivalent g1 g2

g3

g4

f4

f3

f2

f1
x

a

b

c

y

F

G

"AND"

"NOT"

g1 g2

g3

g4

f4

f3

f2

f1

SAT: “f3 = g3”
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Improving CEC performance: Try to merge equivalent sub-
circuits

Randomly test different inputs, collecting pairs of
potentially equivalent nodes
Use And/Inverter-Graph (AIG) for simple circuit
manipulation and merging
Structural hashing: Ensure that each functionally
distinct sub-circuit is encoded only once
SAT sweeping: Use SAT sub-program to test whether
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f1 f4

Structural hashing: “x = y”
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Important cornerstone of Electronic Design Automation [13]
– can be used to validate implementation based on specification
– other EDA techniques: model checking, Automated Test Pattern Generation (ATPG)
Crucial “intrinsically Boolean” benchmark problem throughout history of SAT solving
– Every SAT competition features miters
SAT sweeping originally proposed for bounded model checking [9]
Gate recognition and merging now a form of general inprocessing for any formula,
connected to variable elimination [2]
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Cryptanalysis = analyze, attempt to “break” cryptographic building blocks to test, advance them
Building blocks: Stream ciphers ( (msg,key) 7→ encrypted msg ) [17], hash functions [4], . . .
Algebraic cryptanalysis: try to build equations relating output to input [17]

SAT solver should support XOR clauses
SAT solver should use Gaussian Elimination as a sub-program

Established SAT-based approaches:
Prove mathematical properties of internal states [4]
Find weak keys and preimages [10]
Find collisions of hash functions [14]

Cross-application use of SAT techniques:
Cryptanalysis via SMT solving [22]
Cryptanalysis via bounded model checking [12]
Hash function analysis also used in algorithm design [21]

“it turns out that the highly combinatorial nature of the problem is not well suited for linear solvers, and that SAT solvers
are a better fit for this type of problem” —Dobraunig et al. after trying MILP for ASCON [4]
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Analyzing Cryptographic Building Blocks



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position

Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

14/23 July 14, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Multi Agent Path Finding [18]



Discretized 2D grid of positions, n cooperative agents
Discretized time steps: move 0-1 cells per time step
Per agent: Initial position and goal position
Collisions disallowed
Optimize makespan (= steps until all goals reached)
or Sum of Costs (= total number of actions performed)

Optimal Approaches to MAPF

M∗ algorithm: adjusted A∗ with collision handling
and backtracking
Conflict Based Search (CBS): route individually; at collision,
add constraint to a colliding agent and re-route
Reduction-based approaches: SAT, MaxSAT, ASP, CSP
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Observation on MAPF [18] (and planning, and scheduling, and probably many other problems . . . ):

Direct search-based approaches
perform especially well on large,
lightly constrained instances.

SAT-based approaches
perform especially well on small-sized,
highly constrained instances.

13 7 2 4

3 8 15 5

9 12 1 6

14 11 10
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Is SAT-based MAPF worthwhile?



Given: n d-dimensional sample vectors (d features)
mapped to a (binary) class
Task: Learn decision tree classifying all samples
Explainable classifier (the more shallow the better)

taken from [16]
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Explainable AI: Learning Decision Trees



Given: n d-dimensional sample vectors (d features)
mapped to a (binary) class
Task: Learn decision tree classifying all samples
Explainable classifier (the more shallow the better)

SAT-based approach [15]

Encode complete binary tree of depth k
Encode recursively for each node which samples are
excluded along its path
Constrain that 0-leaves exclude all 1-labeled samples
and vice versa
Solver picks a sub-tree and each node’s feature

taken from [16]
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Explainable AI: Learning Decision Trees



SAT-based approach slow/infeasible for large data sets
Better: Construct initial decision tree heuristically, then locally improve sub-trees via SAT

Hybrid approach, also beneficial in other contexts, e.g., CEC, planning [6]

Enables to scale up merits of SAT to arbitrarily large data sets

taken from [16]
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SAT-based Improvement of Decision Trees [16]



Algorithm selection
Xu, Lin, et al. “SATzilla: portfolio-based algorithm selection for SAT.” JAIR 2008.
Eggensperger, Katharina, Marius Lindauer, and Frank Hutter. “Neural networks for predicting algorithm runtime distributions.” IJCAI 2018.

SAT Solving featuring ML techniques
Liang, Jia Hui, et al. “Learning rate based branching heuristic for SAT solvers.” SAT 2016.
Guo, Wenxuan, et al. “Machine learning methods in solving the boolean satisfiability problem.” Machine Intelligence Research (2023).

Verify Neural Networks via SAT/SMT solving
Huang, Xiaowei, et al. “Safety verification of deep neural networks.” CAV 2017.
Ehlers, Ruediger. “Formal verification of piece-wise linear feed-forward neural networks.” ATVA 2017.

Analyze and understand behavior of SAT solvers and instances
Soos, Mate, Raghav Kulkarni, and Kuldeep S. Meel. “CrystalBall: gazing in the black box of SAT solving.” SAT 2019.
Fuchs, Tobias, Jakob Bach, and Markus Iser. “Active Learning for SAT Solver Benchmarking.” TACAS 2023.
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More on SAT Solving × Machine Learning



Can SAT Solving fix the Deutsche Bahn?

No.
But it might make the Swiss trains run even better!
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Train Scheduling with Disruptions via MaxSAT [11]
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Can SAT Solving fix the Deutsche Bahn?
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Train Scheduling with Disruptions via MaxSAT [11]



Train Scheduling Optimization Problem (TSOP)
Route trains through predefined stations
Schedule train timetable subject to time
and resource constraints

TSOP Under Disruption (TSOPUD)
Numerous disruptions: slowdown, train blocked,
track blocked, staffing / rolling stock
Reroute, reschedule to minimize delays

MaxSAT-based approach

Encode time requirements as hard clauses,
route/train cost as soft clauses
Relax timings incrementally until feasible
Add disruption(s), relax timings as needed

taken from [11]
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Train Scheduling with Disruptions via MaxSAT [11]



SAT is an essential and well-established tool particularly for
software & hardware verification
electronic design automation
security and cryotography

Indicators for a problem to best use SAT for?
large portion of “intrinsically Boolean” constraints
combinatorial search space / set of decisions, NP-hard (or harder)
problem description not too large

Cross-application techniques and insights:
Often promising to hybridize SAT with direct (search) methods: use SAT to resolve difficult cores
Positive feedback loop between solver techniques and applications
Cross-fertilization between different applications (e.g., BMC, SMT)
More often than not, incremental and iterative approaches are needed

Next lecture: SMT Solving

Satisfiability Modulo Theories (SMT) basics and important theories
SMT solving paradigms: lazy vs. eager approach
Brief look at SMT-Lib
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Application Highlights: Takeaways
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