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SMT: Motivation and definition
Some example theories
Formal framework and decidability
SMT solving

Lazy approach: DPLL(T )
Eager approach: The case of Bit Vectors

(Brief) pragmatics of SMT

Note: This lecture is mostly based on the following slide sets:

https://github.com/biotomas/sat-lecture-kit/blob/main/slides/l10.tex
(motivation, example theories, decidability, DPLL(T) example, bit vectors)

https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa08/slides/barret2_smt.pdf
(formal definitions)

https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf
(lazy vs. eager, DPLL(T) techniques & properties)
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Propositional logic: very low-level for many practical problems
Linear (integer or real) arithmetic:

x + y < 5 ∧ (2x − y > 4 ∨ x + y > 7)

Non-linear arithmetic:
x2 + y2 = 4 ∧ x − y = 3

Arithmetic as actually done by a computer:

4294967295 + 1 = 0

Natural point of extension: First Order Logic with suitable interpretation / semantics
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SMT: Motivation



Satisfiability Modulo Theories (SMT)

Decide the satisfiability of a First Order Logic (FOL) formula with respect to a certain background theory.

Syntax: in most cases, quantifier-free, ground fragment of FOL
Set of atomic constants e.g., 0, 1, null
Set of k -ary functions f (x1, . . . , xk) (k ≥ 1) e.g., +, ×, read, write
– each xi is a term, i.e., either a constant or some k ′-ary function
Set of k -ary propositions P(x1, . . . , xk) e.g., =, <
– k = 0: Atom as in propositional logic
– each xi is a term
Formula: Boolean expression featuring the above propositions as its “variables”

Semantics: depends on chosen background theory
Many theories feature equality, i.e., a special proposition P=(x , y) ⇔ x = y
Each theory adds some set of axioms that must hold
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What is SMT?



Equality proposition “=” comes with some implicit axioms:
1. Reflexivity: ∀x : x = x
2. Symmetry: ∀x ∀y : x = y → y = x
3. Transitivity: ∀x ∀y ∀z : x = y ∧ y = z → x = z
4. Congruence: ∀k ∀f (x1, . . . , xk)∀x1, . . . , xk ∀y1, . . . , yk :∧k

i=1 xi = yi → f (x1, . . . , xk) = f (y1, . . . , yk)

Functions are left uninterpreted and thus carry no inherent meaning apart from syntactical footprint

Examples:
(z ̸= x) ∧ (z ̸= y) Satisfiable for ≥ 3 objects
h(a,g(f (b), f (c))) = d ∧ h(b,g(f (a), f (c))) ̸= d ∧ a = b Unsatisfiable

Useful to abstract away non-supported constructions / operations
Also called Theory of Equality
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Theory: Equality with Uninterpreted Functions (EUF)
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Theory: Equality with Uninterpreted Functions (EUF)



Arithmetic over natural numbers with addition only
Constants: 0,1 · Functions: + · Predicates: =
Axioms:
1. EUF axioms
2. Null: ∀x : x + 1 ̸= 0
3. Successor: ∀x , y : x + 1 = y + 1 → x = y
4. Induction: P(0) ∧ (∀x : P(x) → P(x + 1)) → (∀x : P(x))
5. Plus Zero: ∀x : x + 0 = x
6. Plus successor: ∀x , y : x + (y + 1) = (x + y) + 1
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Theory: Presburger Arithmetic



Arithmetic over natural numbers with addition and multiplication
Constants: 0,1 · Functions: +,× · Predicates: =
Axioms:
1. EUF axioms
2. Null: ∀x : x + 1 ̸= 0
3. Successor: ∀x , y : x + 1 = y + 1 → x = y
4. Induction: P(0) ∧ (∀x : P(x) → P(x + 1)) → (∀x : P(x))
5. Plus Zero: ∀x : x + 0 = x
6. Plus successor: ∀x , y : x + (y + 1) = (x + y) + 1
7. Times Zero: ∀x : x × 0 = 0
8. Times successor: ∀x , y : x × (y + 1) = (x × y) + x
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Theory: Peano Arithmetic



Basic reasoning over arrays (and memory in general)
Functions: read(a, i), write(a, i , v) · Predicates: =
Axioms:
1. EUF axioms
2. Read over write #1: ∀a, v , i , j : i = j → read(write(a, i , v), j) = v
2. Read over write #2: ∀a, v , i , j : i ̸= j → read(write(a, i , v), j) = read(a, j)
3. Extensionality: ∀a,b : a = b ↔ (∀i : read(a, i) = read(b, i))
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Theory: Arrays



Signatures and Models

A signature Σ is a set of constants, functions, and predicates.
A model M of Σ is a pair of a set D, called the domain of M, and a mapping
– from each constant c ∈ Σ to some d ∈ D;
– from each k -ary function f ∈ Σ to some function ϕ : Dk → D; and
– from each k -ary predicate P ∈ Σ to some relation P ⊆ Dk .

Σ-formula, Σ-theories

A Σ-formula is a FOL formula over the according symbols of Σ.
A Σ-theory T is a set of sentences, each of which is a Σ-formula.

T -Satisfiability and T -Validity

A Σ-formula F is T -satisfiable iff there is a model M of T such that T ∪ {F} is true under M.
A Σ-formula F is T -valid iff T ∪ {F} is true under all models M of T .
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SMT Definitions (semi-formal)



Definition: Theory Decidability

A theory T is decidable if and only if the T -satisfiability of every Σ-formula is decidable.

Quantor-free Fragment Conjunction of literals
Theory Decidable? decidable? decidable?

Uninterpreted Functions – ✓ ✓
Peano Arithmetic – – ✓
Presburger Arithmetic ✓ ✓ ✓
Arrays – ✓ ✓
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Decidability of SMT



For SMT solving, we differentiate two general approaches:

Eager approach: Find a direct translation of T ∪ F to propositional logic; perform SAT solving [1]
Promising for “Boolean theories” like arrays, bit vectors
Need to encode full theory in advance
Theory-specific encodings required

Lazy approach: Perform propositional reasoning over the Boolean skeleton of F ;
lazily check whether a found propositional model is consistent with T .

Known as DPLL(T ) in literature [3]
Numerous optimizations lead to close interaction between SAT solver and theory solver
Modular and flexible architecture
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SMT Solving



Σ-Formula F (linear integer arithmetic):

y ≥ 1 ∧ (x < 0 ∨ y < 1) ∧ (x ≥ 0 ∨ y < 0)

Boolean skeleton:

A ∧ (B ∨ C) ∧ (D ∨ E)

Satisfying assignment found by SAT solver:

A, ¬B, C, ¬D, E

Inconsistent subset of according T -literals:

y ≥ 1, y < 1, y < 0

Exclude this inconsistency:

¬(y ≥ 1) ∨ ¬(y < 1)

Next Boolean skeleton:

A ∧ (B ∨ C) ∧ (D ∨ E) ∧ (¬A ∨ ¬C)

. . .

12/20 July 21, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Lazy Approach: Example
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Lazy Approach: Example



Optimizations of DPLL(T ):
Already check theory consistency of a partial assignment as it is being constructed
Let theory solver guide search by returning consequences implied by a partial assignment
Upon inconsistency, instead of a full restart, backtrack to a point where the assignment was still consistent

DPLL(T ) follows modular approach:
SAT solver and theory solver communicate via relatively simple API
– most recently, IPASIR-UP (“User Propagators”) [2]
Theory solver only receives conjunctions of literals
– Satisfiability of such conjunctions is decidable in most theories
New theory? → just plug in a new theory solver
SAT solver can be embedded with little effort
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Lazy Approach



int x, y;
...
if (x - y > 0) {
assert(x > y);
...

}

Can this assertion fail?

– Linear Integer Arithmetic: x − y > 0 ∧ ¬(x > y) is unsatisfiable.
– Computer: assertion fails if x = 2147483648 and y = 1!
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Bit Vectors via Eager Approach: Motivation
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Bit Vectors via Eager Approach: Motivation



Bit Vector (BV) theory: Express numeric variables as bit vectors. Reason over them.
Bit vector v has bits v0, . . . , vn−1, (bit) length n = |v |, (unsigned) value ⟨v⟩ = Σ

|v |−1
i=0 2ivi

Positional manipulation functions, like concat(a,b) := (a0, . . . ,ana−1,b0, . . . ,bnb−1),
zero_extend(a, k) := (a0, . . . ,an−1,0, . . . ,0) (k zeroes),
leftshift(a, k), rightshift(a, k), etc.
Bitwise operation functions, like not(a), and(a,b), or(a,b), xor(a,b)
Arithmetic operation functions, like add(a,b), sub(a,b), mul(a,b)
Comparison predicates, like =, <signed, <unsigned, etc.

Above assertion example: (0(32) <signed sub(x , y)) ∧ (x ≤signed y)

SMT solver for BV theory?
— eager approach is natural due to intrinsically Boolean structure
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Bit Vector via Eager Approach: Theory (informal)



Propositional encoding F of a bit vector formula Φ:
Initialize F as the Boolean skeleton of Φ,
substituting each predicate P with a Boolean abstraction variable AV (P)

For each added abstraction variable AV (P), extend F by two kinds of constraints:
– constraints that express the predicate P
– constraints for each term in P
(using n Boolean variables v0, . . . , vn−1 for each term corresponding to a bit vector v of length n)

Some (simple) examples for constraints:

AV (x = y) ↔
( |x |−1∧

i=0

xi ↔ yi
)

AV (and(a,b)) ↔
( |x |−1∧

i=0

and(a,b)i ↔ (ai ∧ bi)
)
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Bit Vector via Eager Theory: Encoding



Some constraints may require case distinction over bit vector values
Some constraints are expensive to encode
Incremental schemes possible to save encoding effort

Under- or over-approximate encoding, react based on SAT/UNSAT
Add constraints lazily – counter-example guided abstraction refinement (CEGAR)
Approximate expensive operations (like mul(a,b)) by replacing them with uninterpreted functions

Further reading: [4]
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Bit Vector via Eager Theory: Remarks



Example: Swap two integers without third variable

int x, y, oldx, oldy;
...
oldx = x;
oldy = y;
x = x + y;
y = x - y;
x = x - y;
assert(y == oldx && x == oldy);

Example from https://smt-lib.org/examples.shtml
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SMT in Practice

https://smt-lib.org/examples.shtml


SMT is a vast area – we barely scratched the surface.

Standardization of different theories & logics
and their interactions
SMT solvers support subsets of theories

Completely different reasoning needed
for different theories, applications

Increasingly relevant research topic:
Proofs for SMT solvers
Definitive resource surrounding SMT:
http://smt-lib.org/
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SMT: Concluding Remarks

http://smt-lib.org/
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