

Practical SAT Solving

Lecture 12 – Satisfiability Modulo Theories (SMT)
Markus Iser, <u>Dominik Schreiber</u> | July 21, 2025

Roadmap

- SMT: Motivation and definition
- Some example theories
- Formal framework and decidability
- SMT solving
 - Lazy approach: DPLL(*T*)
 - Eager approach: The case of Bit Vectors
- (Brief) pragmatics of SMT

```
Note: This lecture is mostly based on the following slide sets:
```

```
https://github.com/biotomas/sat-lecture-kit/blob/main/slides/l10.tex (motivation, example theories, decidability, DPLL(T) example, bit vectors)
```

https://resources.mpi-inf.mpg.de/departments/rg1/conferences/vtsa08/slides/barret2_smt.pdf

(formal definitions)

https://alexeyignatiev.github.io/ssa-school-2019/slides/ao-satsmtar19-slides.pdf

(lazy vs. eager, DPLL(T) techniques & properties)

SMT: Motivation

Propositional logic: very low-level for many practical problems

■ Linear (integer or real) arithmetic:

$$x + y < 5 \land (2x - y > 4 \lor x + y > 7)$$

Non-linear arithmetic:

$$x^2 + y^2 = 4 \wedge x - y = 3$$

Arithmetic as actually done by a computer:

$$4294967295 + 1 = 0$$

Natural point of extension: First Order Logic with suitable interpretation / semantics

What is SMT?

Satisfiability Modulo Theories (SMT)

Decide the satisfiability of a First Order Logic (FOL) formula with respect to a certain background theory.

- Syntax: in most cases, quantifier-free, ground fragment of FOL
 - Set of atomic constants
 - Set of k-ary functions $f(x_1, \ldots, x_k)$ $(k \ge 1)$ each x_i is a term, i.e., either a constant or some k'-ary function
 - Set of k-ary propositions $P(x_1, ..., x_k)$
 - -k = 0: Atom as in propositional logic
 - each x_i is a term
 - Formula: Boolean expression featuring the above propositions as its "variables"

```
e.g., 0, 1, null e.g., +, \times, read, write
```

$$\text{e.g.}, =, <$$

What is SMT?

Satisfiability Modulo Theories (SMT)

Decide the satisfiability of a First Order Logic (FOL) formula with respect to a certain background theory.

- Syntax: in most cases, quantifier-free, ground fragment of FOL
 - Set of atomic constants
 - Set of *k*-ary functions $f(x_1, ..., x_k)$ ($k \ge 1$)
 - each x_i is a term, i.e., either a constant or some k'-ary function
 - \blacksquare Set of k-ary propositions $P(x_1,\ldots,x_k)$
 - -k = 0: Atom as in propositional logic
 - each x_i is a term
 - Formula: Boolean expression featuring the above propositions as its "variables"
- **Semantics:** depends on chosen background theory
 - Many theories feature equality, i.e., a special proposition $P_{-}(x, y) \Leftrightarrow x = y$
 - Each theory adds some set of axioms that must hold

e.g., =, <

Theory: Equality with Uninterpreted Functions (EUF)

- Equality proposition "=" comes with some implicit axioms:
 - 1. Reflexivity: $\forall x : x = x$
 - 2. Symmetry: $\forall x \forall y : x = y \rightarrow y = x$
 - 3. Transitivity: $\forall x \forall y \forall z : x = y \land y = z \rightarrow x = z$
 - 4. Congruence: $\forall k \ \forall f(x_1, \dots, x_k) \ \forall x_1, \dots, x_k \ \forall y_1, \dots, y_k :$ $\bigwedge_{i=1}^k x_i = y_i \to f(x_1, \dots, x_k) = f(y_1, \dots, y_k)$
- Functions are left uninterpreted and thus carry no inherent meaning apart from syntactical footprint

Theory: Equality with Uninterpreted Functions (EUF)

- Equality proposition "=" comes with some implicit axioms:
 - 1. Reflexivity: $\forall x : x = x$
 - 2. Symmetry: $\forall x \forall y : x = y \rightarrow y = x$
 - 3. Transitivity: $\forall x \forall y \forall z : x = y \land y = z \rightarrow x = z$
 - 4. Congruence: $\forall k \forall f(x_1, \dots, x_k) \forall x_1, \dots, x_k \forall y_1, \dots, y_k :$ $\bigwedge_{i=1}^k x_i = y_i \to f(x_1, \dots, x_k) = f(y_1, \dots, y_k)$
- Functions are left uninterpreted and thus carry no inherent meaning apart from syntactical footprint
- Examples:

$$(z \neq x) \land (z \neq y)$$

 $h(a, g(f(b), f(c))) = d \land h(b, g(f(a), f(c))) \neq d \land a = b$

Satisfiable for \geq 3 objects Unsatisfiable

Theory: Equality with Uninterpreted Functions (EUF)

- Equality proposition "=" comes with some implicit axioms:
 - 1. Reflexivity: $\forall x : x = x$
 - 2. Symmetry: $\forall x \forall y : x = y \rightarrow y = x$
 - 3. Transitivity: $\forall x \forall y \forall z : x = y \land y = z \rightarrow x = z$
 - 4. Congruence: $\forall k \forall f(x_1, \dots, x_k) \forall x_1, \dots, x_k \forall y_1, \dots, y_k :$ $\bigwedge_{i=1}^k x_i = y_i \rightarrow f(x_1, \dots, x_k) = f(y_1, \dots, y_k)$
- Functions are left uninterpreted and thus carry no inherent meaning apart from syntactical footprint
- Examples:

$$(z \neq x) \land (z \neq y)$$

 $h(a, g(f(b), f(c))) = d \land h(b, g(f(a), f(c))) \neq d \land a = b$

- Useful to abstract away non-supported constructions / operations
- Also called Theory of Equality

Satisfiable for ≥ 3 objects Unsatisfiable

Theory: Presburger Arithmetic

Arithmetic over natural numbers with addition only

- Constants: 0, 1 · Functions: + · Predicates: =
- Axioms:
 - 1. EUF axioms
 - 2. Null: $\forall x : x + 1 \neq 0$
 - 3. Successor: $\forall x, y : x + 1 = y + 1 \rightarrow x = y$
 - 4. Induction: $P(0) \wedge (\forall x : P(x) \rightarrow P(x+1)) \rightarrow (\forall x : P(x))$
 - 5. Plus Zero: $\forall x : x + 0 = x$
 - 6. Plus successor: $\forall x, y : x + (y + 1) = (x + y) + 1$

Theory: Peano Arithmetic

Arithmetic over natural numbers with addition and multiplication

- Constants: $0, 1 \cdot Functions: +, \times \cdot Predicates: =$
- Axioms:
 - 1. EUF axioms
 - 2. Null: $\forall x : x + 1 \neq 0$
 - 3. Successor: $\forall x, y : x + 1 = y + 1 \rightarrow x = y$
 - 4. Induction: $P(0) \wedge (\forall x : P(x) \rightarrow P(x+1)) \rightarrow (\forall x : P(x))$
 - 5. Plus Zero: $\forall x : x + 0 = x$
 - 6. Plus successor: $\forall x, y : x + (y + 1) = (x + y) + 1$
 - 7. Times Zero: $\forall x : x \times 0 = 0$
 - 8. Times successor: $\forall x, y : x \times (y+1) = (x \times y) + x$

Theory: Arrays

Basic reasoning over arrays (and memory in general)

- Functions: read(a, i), write(a, i, v) · Predicates: =
- Axioms:
 - 1. EUF axioms
 - 2. Read over write #1: $\forall a, v, i, j : i = j \rightarrow \text{read}(\text{write}(a, i, v), j) = v$
 - 2. Read over write #2: $\forall a, v, i, j : i \neq j \rightarrow \text{read}(\text{write}(a, i, v), j) = \text{read}(a, j)$
 - 3. Extensionality: $\forall a, b : a = b \leftrightarrow (\forall i : read(a, i) = read(b, i))$

SMT Definitions (semi-formal)

Signatures and Models

A signature Σ is a set of constants, functions, and predicates.

A model M of Σ is a pair of a set D, called the domain of M, and a mapping

- from each constant $c \in \Sigma$ to some $d \in D$;
- from each k-ary function $f \in \Sigma$ to some function $\phi : D^k \to D$; and
- from each k-ary predicate $P \in \Sigma$ to some *relation* $P \subseteq D^k$.

Σ -formula, Σ -theories

A Σ -formula is a FOL formula over the according symbols of Σ .

A Σ -theory \mathcal{T} is a set of sentences, each of which is a Σ -formula.

\mathcal{T} -Satisfiability and \mathcal{T} -Validity

A Σ -formula F is \mathcal{T} -satisfiable iff there is a model M of \mathcal{T} such that $\mathcal{T} \cup \{F\}$ is true under M.

A Σ -formula F is \mathcal{T} -valid iff $\mathcal{T} \cup \{F\}$ is true under *all* models M of \mathcal{T} .

Decidability of SMT

Definition: Theory Decidability

A theory \mathcal{T} is decidable if and only if the \mathcal{T} -satisfiability of every Σ -formula is decidable.

Theory	Decidable?	Quantor-free Fragment decidable?	Conjunction of literals decidable?
Uninterpreted Functions	_	√	\checkmark
Peano Arithmetic	_	_	\checkmark
Presburger Arithmetic	\checkmark	\checkmark	\checkmark
Arrays	_	\checkmark	\checkmark

SMT Solving

For SMT solving, we differentiate **two general approaches**:

SMT Solving

For SMT solving, we differentiate **two general approaches**:

- **Eager approach**: Find a direct translation of $\mathcal{T} \cup F$ to propositional logic; perform SAT solving [1]
 - Promising for "Boolean theories" like arrays, bit vectors
 - Need to encode full theory in advance
 - Theory-specific encodings required

SMT Solving

For SMT solving, we differentiate **two general approaches**:

- **Eager approach**: Find a direct translation of $\mathcal{T} \cup F$ to propositional logic; perform SAT solving [1]
 - Promising for "Boolean theories" like arrays, bit vectors
 - Need to encode full theory in advance
 - Theory-specific encodings required
- **Lazy approach**: Perform propositional reasoning over the Boolean skeleton of F; lazily check whether a found propositional model is consistent with \mathcal{T} .
 - Known as $DPLL(\mathcal{T})$ in literature [3]
 - Numerous optimizations lead to close interaction between SAT solver and theory solver
 - Modular and flexible architecture

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E)$$

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E)$$

Satisfying assignment found by SAT solver:

$$A$$
, $\neg B$, C , $\neg D$, E

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E)$$

Satisfying assignment found by SAT solver:

$$A$$
, $\neg B$, C , $\neg D$, E

Inconsistent subset of according \mathcal{T} -literals:

$$y \ge 1, y < 1, y < 0$$

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E)$$

Satisfying assignment found by SAT solver:

$$A$$
, $\neg B$, C , $\neg D$, E

Inconsistent subset of according \mathcal{T} -literals:

$$y \ge 1, y < 1, y < 0$$

Exclude this inconsistency:

$$\neg (y \ge 1) \lor \neg (y < 1)$$

 Σ -Formula F (linear integer arithmetic):

$$y \ge 1 \land (x < 0 \lor y < 1) \land (x \ge 0 \lor y < 0)$$

Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E)$$

Satisfying assignment found by SAT solver:

$$A$$
, $\neg B$, C , $\neg D$, E

Inconsistent subset of according \mathcal{T} -literals:

$$y \ge 1, y < 1, y < 0$$

Exclude this inconsistency:

$$\neg (y \ge 1) \lor \neg (y < 1)$$

Next Boolean skeleton:

$$A \wedge (B \vee C) \wedge (D \vee E) \wedge (\neg A \vee \neg C)$$

. . .

Lazy Approach

Optimizations of DPLL(T):

- Already check theory consistency of a partial assignment as it is being constructed
- Let theory solver guide search by returning consequences implied by a partial assignment
- Upon inconsistency, instead of a full restart, backtrack to a point where the assignment was still consistent

Lazy Approach

Optimizations of DPLL(T):

- Already check theory consistency of a partial assignment as it is being constructed
- Let theory solver guide search by returning consequences implied by a partial assignment
- Upon inconsistency, instead of a full restart, backtrack to a point where the assignment was still consistent

DPLL(*T*) follows modular approach:

- SAT solver and theory solver communicate via relatively simple API
 - most recently, IPASIR-UP ("User Propagators") [2]
- Theory solver only receives conjunctions of literals
 - Satisfiability of such conjunctions is decidable in most theories
- New theory? → just plug in a new theory solver
- SAT solver can be embedded with little effort

Bit Vectors via Eager Approach: Motivation

```
int x, y;
if (x - y > 0) {
 assert(x > y);
  . . .
```

Can this assertion fail?

Bit Vectors via Eager Approach: Motivation

```
int x, y;
...
if (x - y > 0) {
   assert(x > y);
   ...
}
```

Can this assertion fail?

– Linear Integer Arithmetic: $x - y > 0 \land \neg(x > y)$ is unsatisfiable.

Bit Vectors via Eager Approach: Motivation

```
int x, y;
...
if (x - y > 0) {
   assert(x > y);
   ...
}
```

Can this assertion fail?

- Linear Integer Arithmetic: $x y > 0 \land \neg(x > y)$ is unsatisfiable.
- Computer: assertion fails if x = 2147483648 and y = 1!

Bit Vector via Eager Approach: Theory (informal)

Bit Vector (BV) theory: Express numeric variables as bit vectors. Reason over them.

- Bit vector v has bits v_0, \ldots, v_{n-1} , (bit) length n = |v|, (unsigned) value $\langle v \rangle = \sum_{i=0}^{|v|-1} 2^i v_i$
- Positional manipulation functions, like concat $(a,b) := (a_0,\ldots,a_{n_a-1},b_0,\ldots,b_{n_b-1}),$ zero_extend $(a,k) := (a_0,\ldots,a_{n-1},0,\ldots,0)$ (k zeroes), leftshift(a,k), rightshift(a,k), etc.
- Bitwise operation functions, like not(a), and (a, b), or (a, b), xor (a, b)
- Arithmetic operation functions, like add(a, b), sub(a, b), mul(a, b)
- \blacksquare Comparison predicates, like =, $<_{\text{signed}}$, $<_{\text{unsigned}}$, etc.

Above assertion example: $(0_{(32)} <_{\text{signed}} \text{sub}(x, y)) \land (x \leq_{\text{signed}} y)$

SMT solver for BV theory?

— eager approach is natural due to intrinsically Boolean structure

Bit Vector via Eager Theory: Encoding

Propositional encoding F of a bit vector formula Φ :

- Initialize F as the Boolean skeleton of Φ , substituting each predicate P with a Boolean abstraction variable AV(P)
- For each added abstraction variable AV(P), extend F by two kinds of constraints:
 - constraints that express the predicate P
 - constraints for each term in P (using n Boolean variables v_0, \ldots, v_{n-1} for each term corresponding to a bit vector v of length n)

Some (simple) examples for constraints:

$$AV(x=y) \leftrightarrow ig(igwedge_{i=0}^{|x|-1} x_i \leftrightarrow y_iig)$$
 $AV(\operatorname{and}(a,b)) \leftrightarrow ig(igwedge_{i=0}^{|x|-1} \operatorname{and}(a,b)_i \leftrightarrow (a_i \wedge b_i)ig)$

Bit Vector via Eager Theory: Remarks

- Some constraints may require case distinction over bit vector values
- Some constraints are expensive to encode
- Incremental schemes possible to save encoding effort
 - Under- or over-approximate encoding, react based on SAT/UNSAT
 - Add constraints lazily counter-example guided abstraction refinement (CEGAR)
 - \blacksquare Approximate expensive operations (like mul(a, b)) by replacing them with uninterpreted functions
- Further reading: [4]

SMT in Practice

Example: Swap two integers without third variable

```
int x, y, oldx, oldy;
...
oldx = x;
oldy = y;
x = x + y;
y = x - y;
x = x - y;
assert(y == oldx && x == oldy);
```

Example from https://smt-lib.org/examples.shtml

```
set-logic QF_BV
set-option :produce-models true
declare-const x_0 (_ BitVec 32)
declare-const x_1 (_ BitVec 32
declare-const x_2 (_ BitVec 32
declare-const y_0 (_ BitVec 32)
declare-const y_1 (_ BitVec 32)
assert (= x_1 (bvadd x_0 y_0))
assert (= y_1 (bvsub x_1 y_0))
assert (= x_2 (bvsub x_1 y_1))
assert (not
 (and (= x_2 y_0)
      (= y_1 x_0))
check-sat)
unsat
exit)
```


SMT: Concluding Remarks

SMT is a vast area – we barely scratched the surface.

- Standardization of different theories & logics and their interactions
- SMT solvers support subsets of theories
 - Completely different reasoning needed for different theories, applications
- Increasingly relevant research topic: Proofs for SMT solvers
- Definitive resource surrounding SMT: http://smt-lib.org/

References I

- [1] Robert Brummayer und Armin Biere. "Boolector: An efficient SMT solver for bit-vectors and arrays". In: *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*. Springer. 2009, S. 174–177.
- [2] Katalin Fazekas u. a. "IPASIR-UP: User Propagators for CDCL". In: Theory and Applications of Satisfiability Testing (SAT). 2023. DOI: 10.4230/LIPIcs.SAT.2023.8.
- [3] Robert Nieuwenhuis, Albert Oliveras und Cesare Tinelli. "Solving SAT and SAT modulo theories: From an abstract Davis—Putnam—Logemann—Loveland procedure to DPLL(T)". In: *Journal of the ACM (JACM)* 53.6 (2006), S. 937–977.
- [4] Samuel Teuber, Marko Kleine Büning und Carsten Sinz. "An Incremental Abstraction Scheme for Solving Hard SMT-Instances over Bit-Vectors". In: arXiv preprint arXiv:2008.10061 (2020).

