



**Practical SAT Solving** 

**Lecture 13** – Maximum Satisfiability (MaxSAT)

Markus Iser, Dominik Schreiber | July 28, 2025

# **Maximum Satisfiability**

Today's lecture is based on the slides by Prof. Matti Järvisalo presented at 2016 SAT Summer School.





# Maximum Satisfiability (MaxSAT)

### **Exact Boolean Optimization Paradigm**

- Basic concepts: MaxSAT, complexity, and applications
- Overview of algorithmic approaches to MaxSAT
  - Branch and Bound
  - Integer Programming (IP)
  - Linear SAT-UNSAT (LSU) Approach
  - Core-guided Approach
  - Implicit Hitting Sets (IHS)

### **Boolean Optimization**

### **Motivation**

Most real-world problems involve an optimization component. There is a high demand for automated approaches to finding good solutions to computationally hard optimization problems.

### Examples

- Find a shortest path/plan/execution to a goal/error state: *Planning, model checking, debugging, . . .*
- Find a smallest explanation: *Explainable machine learning*, . . .
- Find a least resource-consuming schedule: Scheduling, logistics, . . .

### Benefits of provably optimal solutions

- Resource savings: Time, Workforce, Energy, Material, . . .
- Accuracy
- Better approximations by optimally solving simplified problem representations

Key Challenge: Scalability of exactly solving instances of NP-hard optimization problems

# **Generic Linear Optimization Paradigms**

Given a conjunction of constraints of the form  $\sum_{i=1}^{n} c_i x_i \leq b$  (with constant coefficients  $c_i$  and bound b), find an assignment to the variables  $x_i$  that satisfies all constraints and that maximizes the objective function  $\sum_{i=1}^{n} d_i x_i$  (with constant coefficients  $d_i$ ).

### Constrained Optimization Paradigms

- Integer-Linear Programming (ILP)
  - Variables  $x_i$ , Coefficients  $c_i$ ,  $d_i$ , and Bounds b are Integers
  - Algorithms: e.g. Branch-and-Cut with Simplex
- Pseudo-Boolean Optimization (PBO)
  - Variables  $x_i$  are Boolean, Coefficients  $c_i$ ,  $d_i$ , and Bound b are Integers
  - Algorithms: e.g. CDCL-based
- Maximum Satisfiability (MaxSAT)
  - Variables  $x_i$  are Boolean, Coefficients  $c_i$ ,  $d_i \in \{-1, 0, 1\}$ , Bound b = -1
  - Algorithms: e.g. CDCL-based

# **MaxSAT: Classic Definition and Terminology**

- **Input:** CNF formula *F* (set of clauses)
- **Task:** Find an assignment  $\tau$  that maximizes the number of satisfied clauses

#### Central Generalizations

- Weighted MaxSAT: Each clause C has a weight  $w_C$ , and the goal is to maximize the total weight of satisfied clauses.
- Partial MaxSAT: Some clauses are hard (infinite weight); soft clauses can be violated.
- Weighted Partial MaxSAT: Mix of hard clauses and weighted soft clauses.

**Relationship with Generic Optimization:** Each of these variants can be reencoded such that all soft clauses are unit clauses. Soft unit clauses can then be interpreted as variables in the objective function.

#### **Terminology**

- **Solution:** Assignment satisfying all hard clauses
- Cost: Sum of weights of falsified soft clauses
- Optimal Solution: One that minimizes the cost

# **MaxSAT Applications**

MaxSAT solvers are particularly successful on inherently Boolean problems.

- Placement/Routing/Debugging/Verification in Hardware Design
- Planning, Scheduling, Resource Allocation
- Product Configuration
- Software Package Management
- Causal Discovery, Argumentation, Formal XAI
- Max-Clique
- ... and many more!

Central to success: Advances in MaxSAT solver technology.

# **Example: Encoding Shortest Paths**

- Grid-based shortest path problem from *S* to *G*
- Horizontal/vertical moves only; blocked cells not allowed
- Not a practical MaxSAT application, but useful for illustration

| n | 0 |   | р | q |
|---|---|---|---|---|
| h | i | j | k | G |
| c | d | e | l | r |
| a |   | f |   | t |
| S | b | g | m | u |

# **Example: Encoding Shortest Paths**

#### Basic Encoding Idea:

- One Boolean variable per unblocked square
- S, G must be visited (hard unit clauses)
- All other squares: soft unit clauses (e.g.,  $\neg a$ ) with weight 1 ("Prefer not to visit")

MaxSAT minimizes the number of visited squares.

Without further constraints that formulation only visits *S* and *G*.

| n | 0 |   | р | q |
|---|---|---|---|---|
| h | i | j | k | G |
| с | d | e | l | r |
| a |   | f |   | t |
| S | b | g | m | u |

# **Example: Encoding Shortest Paths**

Ensure a valid path between *S* and *G*.

**Constraint 1:** S and G must have exactly one visited neighbor

■ For *S*:

$$a+b=1$$
 CNF:  $(a \lor b), (\neg a \lor \neg b)$ 

**■** For *G*:

$$k+q+r=1$$
  
CNF:  $(k \lor q \lor r), (\neg k \lor \neg q), (\neg k \lor \neg r), (\neg q \lor \neg r)$ 

Constraint 2: All other visited squares must have exactly two visited neighbors

- **Example:** for square e, if e is visited, then d + j + l + f = 2
- Requires encoding a cardinality constraint in CNF

| n | 0 |   | р | q |
|---|---|---|---|---|
| h | i | j | k | G |
| c | d | e | 1 | r |
| a |   | f |   | t |
| S | b | g | m | u |

### **Example: Path Properties**

Every solution to the hard clauses defines a valid path from S to G.

- Each visited square falsifies a soft clause (e.g.,  $\neg x$ )
- MaxSAT solution is a shortest path (minimum number of visited squares)



- Orange path: 14 visited squares
- Green path: 8 visited squares (optimal)

### Representing High-Level Soft Constraints

MaxSAT can represent high-level soft constraints compactly.

### Softening an $\mathcal{NP}$ -Constraint

- Let C be a finite-domain soft constraint with weight  $W_C$
- Encode C into CNF:  $CNF(C) = C_1 \wedge C_2 \wedge \cdots \wedge C_m$
- Introduce fresh variable a, add hard clauses:  $(C_i \lor a)$  for all i
- Add soft clause:  $(\neg a)$  with weight  $W_C$

# **MaxSAT: Complexity**

- **Decision version:**  $\mathcal{NP}$ -complete
  - Given CNF *F*, integer *k*: is there an assignment satisfying at least *k* clauses?
- **Optimization version:**  $FP^{\mathcal{NP}}$ -complete
  - Solvable with a polynomial number of calls to an  $\mathcal{NP}$  oracle
  - lacktriangle SAT solver acts as the  $\mathcal{NP}$  oracle in practice
  - Same as TSP: polynomial-time computation using an  $\mathcal{NP}$  oracle
- Hard to approximate: APX-complete
  - Constant-factor approximation possible
  - No poly-time approximation scheme (PTAS) unless  $\mathcal{P} = \mathcal{NP}$

### Practical MaxSAT Solving: Input Format, Solvers

### Standard Solver Input Format: DIMACS WCNF

- Like DIMACS CNF: Variables indexed from 1 to n, Negation: -i means  $\neg x_i$ , Clauses terminated with 0
- Header line:
  p wcnf <#vars> <#clauses> <top>
- Clause weight is first integer in line; if weight  $\geq$  top  $\rightarrow$  hard clause

#### Push-Button Solvers / Black-box Solvers

- Input: in standard WCNF format
- Output: provably optimal solution or UNSATISFIABLE
- Internally rely on CDCL SAT solvers to prove unsatisfiability of subsets of clauses
- Examples: Open-source MaxSAT Solvers
  - OpenWBO http://sat.inesc-id.pt/open-wbo/
  - MaxHS http://maxhs.org
  - LMHS http://www.cs.helsinki.fi/group/coreo/lmhs/

### Recap.

#### So far

- MaxSAT is a powerful paradigm for Boolean optimization
- Can be used to model and solve a wide range of real-world problems
- Complexity:  $\mathsf{FP}^{\mathcal{NP}}$ -complete
- Standard input format: DIMACS WCNF
- Push-button solvers are widely available and effective

### Next up

Algorithms for solving MaxSAT

# Algorithms for MaxSAT Solving

- Branch and Bound: MaxSatz, ahmaxsat
- Direct Integer Programming: IP Encoding + IP Solver (e.g., CPLEX, Gurobi)
- Iterative, Model-Based: QMaxSAT
- Core-Based: Eva, MSCG, OpenWBO, WPM, maxino
- IP-SAT Hybrids: MaxHS, LMHS

### **Branch and Bound**

Classic method for optimization over search trees

Effective on small, combinatorially hard problems (e.g., Max-Clique), but scalability issues with thousands of variables

- UB = Maintain upper bound (UB) on current best solution cost
- mincost(n) = minimum cost achievable under node n
- Backtrack if  $mincost(n) \ge UB$ 
  - $\rightarrow$  no solution under node *n* can improve the current best solution UB

#### Basic technique:

- Compute lower bound (LB) such that mincost(n) ≥ LB
- If LB  $\geq$  UB, then backtrack ( $\Rightarrow$  mincost(n)  $\geq$  LB  $\geq$  UB)



# Branch and Bound: Lower Bounds by Cores

Look for inconsistencies that force some soft clause to be falsified.

- Strategy: find unsatisfiable sets of clauses (UNSAT cores)
- Each core forces at least one clause to be falsified
- Example:
  - $\kappa = \{(x,2), (\neg x,3)\}$  is unsatisfiable; replace with  $\kappa' = \{(\emptyset,2), (\neg x,1)\}$

  - Cost of ∅ increased by 2⇒ 2 is a lower bound
  - The cost of each truth assignment is preserved
- Repeat:
  - 1. Detect unsatisfiable core  $\kappa$
  - 2. Apply sound transformation to increase cost(∅)
  - 3. Stop if no further LB improvement possible or LB > UB

# MaxSAT by Integer Programming (IP)

Using IP solvers as MaxSAT engines.

- IP solvers widely used in Operations Research, e.g. IBM CPLEX, Gurobi, SCIP, etc.
- Solve problems with linear constraints and integer variables
- Very effective on many standard optimization problems
  But do not dominate native MaxSAT solvers on "very Boolean" problems

#### MaxSAT Encoding into IP

- 1. Relax each soft clause  $C_i$  using a new variable  $r_i$
- 2. Convert each clause to linear constraint:

$$r_i + x + (1 - y) + z + (1 - w) \ge 1$$

- 3. Boolean variables become 0-1 bounded integers
- 4. Objective function:

$$\min \sum_{C_i \in F_s} w_i \cdot r_i$$

### **SAT-Based MaxSAT Solving**

The most widely used modern approach.

- Solve a sequence of SAT instances that ask for different values of *k*: *Is there a truth assignment falsifying at most k soft clauses?*
- SAT-based MaxSAT algorithms mainly do two things:
  - 1. Develop better ways to encode this decision problem.
  - 2. Find ways to exploit information obtained from the SAT solver at each stage in the next stage.

Assume unit-weight soft clauses for now . . .

#### Methods for SAT-Based MaxSAT

- Iterative Search: Iteratively increase *k* until SAT
- Core-Based Methods: Use unsatisfiable cores to guide search
- Hybrid Methods: Combine SAT solving with integer programming

### **Iterative Search**

#### Basic Approach

- To check whether F has a solution of cost  $\leq k$ , solve:  $(C_1 \vee r_1) \wedge \cdots \wedge (C_n \vee r_n) \wedge (\sum_{i=1}^n r_i \leq k)$
- Iterate over  $k = 1, 2, \dots$  until optimal k is found

### Iterating over *k*

- Linear Search: (not efficient) Start at k = 1, increment until SAT
- Binary Search: (effective with core-based reasoning)
  - Initialize: LB = 0, UB = #soft clauses
  - Check  $k = \lfloor \frac{LB + UB}{2} \rfloor$
  - If SAT: UB = k, else LB = k + 1
  - Stop when UB = LB + 1, then UB is optimal.
- Linear Search (SAT to UNSAT): (can be effective)
  - Find model  $\pi$  for hard clauses, let k = #violated soft clauses-1
  - Try solving again with lower k until UNSAT
  - If SAT: set *k* to #violated soft clauses and repeat
  - If UNSAT: last SAT solution is optimal

### SAT-Based MaxSAT Solving using UNSAT Cores

#### Motivation

Adding linear cardinality constraints over all soft clauses is too loose:

- $\blacksquare$  One relaxation variable  $r_i$  per soft clause, could be well over 100k of variables
- Linear cardinality constraints over all soft clauses are too loose: no information about which relaxation variables to assign to 1
- SAT solver must explore many subsets of soft clauses

#### Unsatisfiable Cores in MaxSAT

Core-based approach gives more powerful constraint over which particular soft clauses to relax.

- UNSAT Core: A subset  $F'_s \subseteq F_s$  s.t.  $F_h \land F'_s$  is UNSAT
- At least one clause in each core must be falsified
- Instead of iteratively ruling out non-optimal solutions, iteratively find and rule out UNSAT cores
- Typically cores are much smaller than full soft clause set

# Core-Guided MaxSAT Algorithms: Fu-Malik

- First core-guided MaxSAT algorithm [Fu & Malik, 2006]
- Iterative approach:
  - 1. Find an UNSAT core
  - 2. Relax clauses in the core with new variables
  - 3. Add an AtMost-1 constraint over new relaxation vars
- Repeat until the formula becomes SAT
- Each iteration lowers the cost of solutions by 1 (in the unweighted case)

# Fu-Malik: Example

- Initial Formula:
  - $C_1 = x_6 \lor x_2,$   $C_2 = \neg x_6 \lor x_2,$   $C_3 = \neg x_2 \lor x_1,$   $C_4 = \neg x_1,$   $C_5 = \neg x_6 \lor x_8,$   $C_6 = x_6 \lor \neg x_8,$   $C_7 = x_2 \lor x_4,$   $C_8 = \neg x_4 \lor x_5,$   $C_9 = x_7 \lor x_5,$   $C_{10} = \neg x_7 \lor x_5,$   $C_{11} = \neg x_5 \lor x_3,$   $C_{12} = \neg x_3$
- Core 1:  $\{C_3, C_4, C_7, C_8, C_{11}, C_{12}\}$
- Add relaxation variables  $r_1$  to  $r_6$ , and AMO constraint  $\sum r_i \leq 1$
- Core 2:  $\{C_1, C_2, C_3, C_4, C_9, C_{10}, C_{11}, C_{12}\}$
- Add relaxation variables  $r_7$  to  $r_{14}$  to these clauses, and AMO constraint  $\sum_{i=7}^{14} r_i \le 1$
- Now the instance is SAT, and the optimal cost is the number of iterations (2 here)
- Final Formula:

### Other Core-Guided MaxSAT Algorithms

### MSU3 Algorithm by Marques-Silva and Planes (2007)

#### Differences to Fu-Malik:

- Introduce only at most one relaxation variable to each soft clause
  - → Re-use already introduced relaxation variables
- Instead of adding one AtMost-1/Exactly-1 constraint per iteration: Update the AtMost-k, k noting the k-th iteration

### OpenWBO Algorithm by Martins, Joshi, Manquinho, and Lynce, 2014

Combines MSU3 with incremental construction of the cardinality constraint:

→ Each new constraint builds on the encoding of the previous constraint

### WPM2 Algorithm by Ansótegui, Bonet, and Levy, 2013a

Proposes a method for dealing with overlapping cores: groups intersecting cores into disjoint covers.

The cores might not be disjoint but the covers will be

- → at-most-k constraints over the soft clauses in a cover
- → at-least-k constraint over the clauses in a core

# Implicit Hitting Set Algorithms for MaxSAT

### Combining Integer Programming with SAT solving

### Hitting Sets

Given a collection of sets S of elements, a **hitting set** H is a subset of elements that intersects all sets  $S \in S$ . A hitting set H is optimal if no smaller hitting set exists.

**Relationship to MaxSAT:** For any optimal hitting set H of the set of UNSAT cores of a formula F, there is an optimal solutions  $\tau$  to F such that  $\tau$  satisfies exactly the clauses  $F \setminus H$ .

**Key Insight:** To find an optimal solution to a MaxSAT instance F, it suffices to:

- 1. Find an (implicit) hitting set *H* of the UNSAT cores of *F*.
  - $\rightarrow$  Implicit refers to not necessarily having all MUSes of F.
- 2. Find a solution to  $F \setminus H$ .

# Implicit Hitting Set Algorithms for MaxSAT

### Hitting Set Problem as Integer Programming

$$\min \sum_{C \in \bigcup \mathcal{K}} c(C) \cdot r_C \quad \text{subject to} \quad \sum_{C \in \mathcal{K}} r_C \ge 1 \quad \forall K \in \mathcal{K}$$

- $ightharpoonup r_C = 1$  iff clause C is in the hitting set
- Weight function *c*: works also for weighted MaxSAT

### MaxSAT Solving with Implicit Hitting Sets

Iterate over the following steps:

- lacktriangle Accumulate a collection  $\mathcal K$  of UNSAT cores (using a SAT solver)
- Find an optimal hitting set H over K, and rule out the clauses in H for the next SAT solver call (using an IP solver)

... until the SAT solver returns a satisfying assignment.

# Implicit Hitting Set Algorithms for MaxSAT

### **Optimizations**

#### **Optimizations**

- a disjoint phase for obtaining several cores before/between hitting set computations
- combinations of greedy and exact hitting sets computations
- **.** . . .

Some of these optimizations are integral for making the solvers competitive.

#### **IHS MaxSAT Solvers**

For more on some of the details, see

- MaxHS [Davies and Bacchus, 2011 and 2013]
- LMHS [Saikko, Berg, and Järvisalo, 2016]

IHS Algorithms for MaxSAT are among the best performing solvers today, and work well on a wide range of problems, particularly on large instances with many different weights on soft clauses.

### Recap.

### **Today's Lecture**

- MaxSAT is a powerful paradigm for Boolean optimization
- Can be used to model and solve a wide range of real-world problems
- Complexity:  $FP^{\mathcal{NP}}$
- Standard input format: DIMACS WCNF
- Push-button solvers are widely available and effective
- Several algorithmic approaches to MaxSAT solving
- Core-guided MaxSAT solving is a powerful approach
- Implicit Hitting Set algorithms are among the best performing MaxSAT solvers