
Practical SAT Solving

Lecture 13 – Maximum Satisfiability (MaxSAT)
Markus Iser, Dominik Schreiber | July 28, 2025



Today’s lecture is based on the slides by Prof. Matti Järvisalo presented at 2016 SAT Summer School.

http://ssa-school-2016.it.uu.se/programme/#maxSAT

2/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Maximum Satisfiability

http://ssa-school-2016.it.uu.se/programme/#maxSAT


Basic concepts: MaxSAT, complexity, and applications

Overview of algorithmic approaches to MaxSAT

Branch and Bound

Integer Programming (IP)

Linear SAT-UNSAT (LSU) Approach

Core-guided Approach

Implicit Hitting Sets (IHS)

3/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Maximum Satisfiability (MaxSAT)
Exact Boolean Optimization Paradigm



Most real-world problems involve an optimization component. There is a high demand for automated approaches to
finding good solutions to computationally hard optimization problems.

Examples

Find a shortest path/plan/execution to a goal/error state: Planning, model checking, debugging, . . .

Find a smallest explanation: Explainable machine learning, . . .

Find a least resource-consuming schedule: Scheduling, logistics, . . .

Benefits of provably optimal solutions

Resource savings: Time, Workforce, Energy, Material, . . .

Accuracy

Better approximations by optimally solving simplified problem representations

Key Challenge: Scalability of exactly solving instances of NP-hard optimization problems

4/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Boolean Optimization
Motivation



Given a conjunction of constraints of the form
n∑

i=1
cixi ≤ b (with constant coefficients ci and bound b),

find an assignment to the variables xi that satisfies all constraints

and that maximizes the objective function
n∑

i=1
dixi (with constant coefficients di).

Constrained Optimization Paradigms

Integer-Linear Programming (ILP)
Variables xi , Coefficients ci ,di , and Bounds b are Integers

Algorithms: e.g. Branch-and-Cut with Simplex

Pseudo-Boolean Optimization (PBO)
Variables xi are Boolean, Coefficients ci ,di , and Bound b are Integers

Algorithms: e.g. CDCL-based

Maximum Satisfiability (MaxSAT)
Variables xi are Boolean, Coefficients ci ,di ∈ {−1,0,1}, Bound b = −1

Algorithms: e.g. CDCL-based

5/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Generic Linear Optimization Paradigms



Input: CNF formula F (set of clauses)
Task: Find an assignment τ that maximizes the number of satisfied clauses

Central Generalizations

Weighted MaxSAT: Each clause C has a weight wC, and the goal is to maximize the total weight of satisfied clauses.
Partial MaxSAT: Some clauses are hard (infinite weight); soft clauses can be violated.
Weighted Partial MaxSAT: Mix of hard clauses and weighted soft clauses.

Relationship with Generic Optimization: Each of these variants can be reencoded such that all soft clauses are unit
clauses. Soft unit clauses can then be interpreted as variables in the objective function.

Terminology

Solution: Assignment satisfying all hard clauses
Cost: Sum of weights of falsified soft clauses
Optimal Solution: One that minimizes the cost

6/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

MaxSAT: Classic Definition and Terminology



MaxSAT solvers are particularly successful on inherently Boolean problems.

Placement/Routing/Debugging/Verification in Hardware Design

Planning, Scheduling, Resource Allocation

Product Configuration

Software Package Management

Causal Discovery, Argumentation, Formal XAI

Max-Clique

. . . and many more!

Central to success: Advances in MaxSAT solver technology.

7/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

MaxSAT Applications



Grid-based shortest path problem from S to G
Horizontal/vertical moves only; blocked cells not allowed
Not a practical MaxSAT application, but useful for illustration

8/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Example: Encoding Shortest Paths



Basic Encoding Idea:

One Boolean variable per unblocked square

S, G must be visited (hard unit clauses)

All other squares: soft unit clauses (e.g., ¬a)
with weight 1 (“Prefer not to visit”)

MaxSAT minimizes the number of visited squares.

Without further constraints that formulation only visits S and G.

9/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Example: Encoding Shortest Paths



Ensure a valid path between S and G.

Constraint 1: S and G must have exactly one visited neighbor

For S:
a + b = 1
CNF: (a ∨ b), (¬a ∨ ¬b)

For G:
k + q + r = 1
CNF: (k ∨ q ∨ r ), (¬k ∨ ¬q), (¬k ∨ ¬r ), (¬q ∨ ¬r )

Constraint 2: All other visited squares must have exactly two visited neighbors

Example: for square e, if e is visited, then d + j + l + f = 2

Requires encoding a cardinality constraint in CNF

10/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Example: Encoding Shortest Paths



Every solution to the hard clauses defines a valid path from S to G.

Each visited square falsifies a soft clause (e.g., ¬x)

MaxSAT solution is a shortest path (minimum number of visited squares)

Orange path: 14 visited
squares

Green path: 8 visited squares
(optimal)

11/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Example: Path Properties



MaxSAT can represent high-level soft constraints compactly.

Softening an NP-Constraint

Let C be a finite-domain soft constraint with weight WC

Encode C into CNF: CNF (C) = C1 ∧ C2 ∧ · · · ∧ Cm

Introduce fresh variable a, add hard clauses: (Ci ∨ a) for all i

Add soft clause: (¬a) with weight WC

12/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Representing High-Level Soft Constraints



Decision version: NP-complete

Given CNF F , integer k : is there an assignment satisfying at least k clauses?

Optimization version: FPNP-complete

Solvable with a polynomial number of calls to an NP oracle

SAT solver acts as the NP oracle in practice

Same as TSP: polynomial-time computation using an NP oracle

Hard to approximate: APX-complete

Constant-factor approximation possible

No poly-time approximation scheme (PTAS) unless P = NP

13/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

MaxSAT: Complexity



Standard Solver Input Format: DIMACS WCNF

Like DIMACS CNF: Variables indexed from 1 to n, Negation: −i means ¬xi , Clauses terminated with 0

Header line:
p wcnf <#vars> <#clauses> <top>

Clause weight is first integer in line; if weight ≥ top → hard clause

Push-Button Solvers / Black-box Solvers

Input: in standard WCNF format

Output: provably optimal solution or UNSATISFIABLE

Internally rely on CDCL SAT solvers to prove unsatisfiability of subsets of clauses
Examples: Open-source MaxSAT Solvers

OpenWBO — http://sat.inesc-id.pt/open-wbo/
MaxHS — http://maxhs.org
LMHS — http://www.cs.helsinki.fi/group/coreo/lmhs/

14/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Practical MaxSAT Solving: Input Format, Solvers

http://sat.inesc-id.pt/open-wbo/
http://maxhs.org
http://www.cs.helsinki.fi/group/coreo/lmhs/


So far

MaxSAT is a powerful paradigm for Boolean optimization

Can be used to model and solve a wide range of real-world problems

Complexity: FPNP-complete

Standard input format: DIMACS WCNF

Push-button solvers are widely available and effective

Next up

Algorithms for solving MaxSAT

15/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.



Branch and Bound: MaxSatz, ahmaxsat

Direct Integer Programming: IP Encoding + IP Solver (e.g., CPLEX, Gurobi)

Iterative, Model-Based: QMaxSAT

Core-Based: Eva, MSCG, OpenWBO, WPM, maxino

IP-SAT Hybrids: MaxHS, LMHS

16/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Algorithms for MaxSAT Solving



Classic method for optimization over search trees

Effective on small, combinatorially hard problems (e.g., Max-Clique),
but scalability issues with thousands of variables

UB = Maintain upper bound (UB) on current best solution cost

mincost(n) = minimum cost achievable under node n

Backtrack if mincost(n) ≥ UB
→ no solution under node n can improve the current best solution UB

Basic technique:

Compute lower bound (LB) such that mincost(n) ≥ LB

If LB ≥ UB, then backtrack (⇒ mincost(n) ≥ LB ≥ UB)

17/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Branch and Bound



Look for inconsistencies that force some soft clause to be falsified.

Strategy: find unsatisfiable sets of clauses (UNSAT cores)

Each core forces at least one clause to be falsified

Example:
κ = {(x ,2), (¬x ,3)} is unsatisfiable; replace with κ′ = {(∅,2), (¬x ,1)}

{(x ,2), (¬x ,3)} → {(∅,2), (¬x ,1)}

Cost of ∅ increased by 2
⇒ 2 is a lower bound

The cost of each truth assignment is preserved

Repeat:
1. Detect unsatisfiable core κ

2. Apply sound transformation to increase cost(∅)
3. Stop if no further LB improvement possible or LB ≥ UB

18/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Branch and Bound: Lower Bounds by Cores



Using IP solvers as MaxSAT engines.

IP solvers widely used in Operations Research, e.g. IBM CPLEX, Gurobi, SCIP, etc.

Solve problems with linear constraints and integer variables

Very effective on many standard optimization problems

But do not dominate native MaxSAT solvers on “very Boolean” problems

MaxSAT Encoding into IP

1. Relax each soft clause Ci using a new variable ri

2. Convert each clause to linear constraint:

ri + x + (1 − y) + z + (1 − w) ≥ 1

3. Boolean variables become 0-1 bounded integers
4. Objective function:

min
∑

Ci∈Fs

wi · ri

19/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

MaxSAT by Integer Programming (IP)



The most widely used modern approach.

Solve a sequence of SAT instances that ask for different values of k :
Is there a truth assignment falsifying at most k soft clauses?

SAT-based MaxSAT algorithms mainly do two things:

1. Develop better ways to encode this decision problem.

2. Find ways to exploit information obtained from the SAT solver at each stage in the next stage.

Assume unit-weight soft clauses for now . . .

Methods for SAT-Based MaxSAT

Iterative Search: Iteratively increase k until SAT

Core-Based Methods: Use unsatisfiable cores to guide search

Hybrid Methods: Combine SAT solving with integer programming

20/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SAT-Based MaxSAT Solving



Basic Approach

To check whether F has a solution of cost ≤ k , solve: (C1 ∨ r1) ∧ · · · ∧ (Cn ∨ rn) ∧
(∑n

i=1 ri ≤ k
)

Iterate over k = 1,2, . . . until optimal k is found

Iterating over k

Linear Search: (not efficient)
Start at k = 1, increment until SAT
Binary Search: (effective with core-based reasoning)

Initialize: LB = 0, UB = #soft clauses
Check k = ⌊LB+UB

2 ⌋
If SAT: UB = k , else LB = k + 1
Stop when UB = LB + 1, then UB is optimal.

Linear Search (SAT to UNSAT): (can be effective)
Find model π for hard clauses, let k = #violated soft clauses−1
Try solving again with lower k until UNSAT
If SAT: set k to #violated soft clauses and repeat
If UNSAT: last SAT solution is optimal

21/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Iterative Search



Motivation
Adding linear cardinality constraints over all soft clauses is too loose:

One relaxation variable ri per soft clause, could be well over 100k of variables
Linear cardinality constraints over all soft clauses are too loose:
no information about which relaxation variables to assign to 1
SAT solver must explore many subsets of soft clauses

Unsatisfiable Cores in MaxSAT
Core-based approach gives more powerful constraint over which particular soft clauses to relax.

UNSAT Core: A subset F ′
s ⊆ Fs s.t. Fh ∧ F ′

s is UNSAT
At least one clause in each core must be falsified
Instead of iteratively ruling out non-optimal solutions, iteratively find and rule out UNSAT cores
Typically cores are much smaller than full soft clause set

22/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

SAT-Based MaxSAT Solving using UNSAT Cores



First core-guided MaxSAT algorithm [Fu & Malik, 2006]

Iterative approach:
1. Find an UNSAT core

2. Relax clauses in the core with new variables

3. Add an AtMost-1 constraint over new relaxation vars

Repeat until the formula becomes SAT

Each iteration lowers the cost of solutions by 1 (in the unweighted case)

23/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Core-Guided MaxSAT Algorithms: Fu-Malik



Initial Formula:
C1 = x6 ∨ x2, C2 = ¬x6 ∨ x2, C3 = ¬x2 ∨ x1, C4 = ¬x1, C5 = ¬x6 ∨ x8,

C6 = x6 ∨ ¬x8, C7 = x2 ∨ x4, C8 = ¬x4 ∨ x5, C9 = x7 ∨ x5, C10 = ¬x7 ∨ x5,

C11 = ¬x5 ∨ x3, C12 = ¬x3

Core 1: {C3,C4,C7,C8,C11,C12}

Add relaxation variables r1 to r6, and AMO constraint
∑

ri ≤ 1

Core 2: {C1,C2,C3,C4,C9,C10,C11,C12}

Add relaxation variables r7 to r14 to these clauses, and AMO constraint
∑14

i=7 ri ≤ 1

Now the instance is SAT, and the optimal cost is the number of iterations (2 here)

Final Formula:
C1 = x6 ∨ x2 ∨ r7, C2 = ¬x6 ∨ x2 ∨ r8, C3 = ¬x2 ∨ x1 ∨ r1 ∨ r9, C4 = ¬x1 ∨ r2 ∨ r10, C5 = ¬x6 ∨ x8

C6 = x6 ∨ ¬x8, C7 = x2 ∨ x4 ∨ r3, C8 = ¬x4 ∨ x5 ∨ r4, C9 = x7 ∨ x5 ∨ r11, C10 = ¬x7 ∨ x5 ∨ r12

C11 = ¬x5 ∨ x3 ∨ r5 ∨ r13, C12 = ¬x3 ∨ r6 ∨ r14,
∑6

i=1 ri ≤ 1,
∑14

i=7 ri ≤ 1

24/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Fu-Malik: Example



MSU3 Algorithm by Marques-Silva and Planes (2007)

Differences to Fu-Malik:
Introduce only at most one relaxation variable to each soft clause
→ Re-use already introduced relaxation variables
Instead of adding one AtMost-1/Exactly-1 constraint per iteration:
Update the AtMost-k, k noting the k-th iteration

OpenWBO Algorithm by Martins, Joshi, Manquinho, and Lynce, 2014

Combines MSU3 with incremental construction of the cardinality constraint:
→ Each new constraint builds on the encoding of the previous constraint

WPM2 Algorithm by Ansótegui, Bonet, and Levy, 2013a

Proposes a method for dealing with overlapping cores: groups intersecting cores into disjoint covers.
The cores might not be disjoint but the covers will be
→ at-most-k constraints over the soft clauses in a cover
→ at-least-k constraint over the clauses in a core

25/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Other Core-Guided MaxSAT Algorithms



Hitting Sets

Given a collection of sets S of elements, a hitting set H is a subset of elements that intersects all sets S ∈ S.
A hitting set H is optimal if no smaller hitting set exists.

Relationship to MaxSAT: For any optimal hitting set H of the set of UNSAT cores of a formula F ,
there is an optimal solutions τ to F such that τ satisfies exactly the clauses F \ H.

Key Insight: To find an optimal solution to a MaxSAT instance F , it suffices to:

1. Find an (implicit) hitting set H of the UNSAT cores of F .
→ Implicit refers to not necessarily having all MUSes of F .

2. Find a solution to F \ H.

26/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Implicit Hitting Set Algorithms for MaxSAT
Combining Integer Programming with SAT solving



Hitting Set Problem as Integer Programming

min
∑

C∈
⋃
K

c(C) · rC subject to
∑
C∈K

rC ≥ 1 ∀K ∈ K

rC = 1 iff clause C is in the hitting set

Weight function c: works also for weighted MaxSAT

MaxSAT Solving with Implicit Hitting Sets

Iterate over the following steps:

Accumulate a collection K of UNSAT cores (using a SAT solver)

Find an optimal hitting set H over K,
and rule out the clauses in H for the next SAT solver call (using an IP solver)

. . . until the SAT solver returns a satisfying assignment.

27/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Implicit Hitting Set Algorithms for MaxSAT



Optimizations

a disjoint phase for obtaining several cores before/between hitting set computations
combinations of greedy and exact hitting sets computations
. . .

Some of these optimizations are integral for making the solvers competitive.

IHS MaxSAT Solvers
For more on some of the details, see

MaxHS [Davies and Bacchus, 2011 and 2013]
LMHS [Saikko, Berg, and Järvisalo, 2016]

IHS Algorithms for MaxSAT are among the best performing solvers today, and work well on a wide range of problems,
particularly on large instances with many different weights on soft clauses.

28/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Implicit Hitting Set Algorithms for MaxSAT
Optimizations



MaxSAT is a powerful paradigm for Boolean optimization

Can be used to model and solve a wide range of real-world problems

Complexity: FPNP

Standard input format: DIMACS WCNF

Push-button solvers are widely available and effective

Several algorithmic approaches to MaxSAT solving

Core-guided MaxSAT solving is a powerful approach

Implicit Hitting Set algorithms are among the best performing MaxSAT solvers

29/29 July 28, 2025 Markus Iser, Dominik Schreiber: Practical SAT Solving

Recap.
Today’s Lecture


