Lecture 13 — Maximum Satisfiability (MaxSAT)

Markus Iser, Dominik Schreiber | July 28, 2025

Maximum Satisfiability

Today’s lecture is based on the slides by Prof. Matti Jarvisalo presented at 2016 SAT Summer School.

The SAT/SMT/AR

Summer School

June 22-25, 2016
Lisbon, Portugal

http://ssa-school-2016.it.uu.se/programme/#maxSAT

http://ssa-school-2016.it.uu.se/programme/#maxSAT

Maximum Satisfiability (MaxSAT)

m Basic concepts: MaxSAT, complexity, and applications

m Overview of algorithmic approaches to MaxSAT

m Branch and Bound

m Integer Programming (IP)

m Linear SAT-UNSAT (LSU) Approach
m Core-guided Approach

m Implicit Hitting Sets (IHS)

Boolean Optimization

Most real-world problems involve an optimization component. There is a high demand for automated approaches to
finding good solutions to computationally hard optimization problems.

m Find a shortest path/plan/execution to a goal/error state: Planning, model checking, debugging, . ..
m Find a smallest explanation: Explainable machine learning, . ..

m Find a least resource-consuming schedule: Scheduling, logistics, . . .

m Resource savings: Time, Workforce, Energy, Material, . ..

m Accuracy
m Better approximations by optimally solving simplified problem representations

Key Challenge: Scalability of exactly solving instances of NP-hard optimization problems

Generic Linear Optimization Paradigms

n
Given a conjunction of constraints of the form >_ ¢ix; < b (with constant coefficients ¢; and bound b),
i=1
find an assignment to the variables x; that satisfies all constraints

n
and that maximizes the objective function) d;x; (with constant coefficients d).
i=1

Constrained Optimization Paradigms

m Integer-Linear Programming (ILP)
m Variables x;, Coefficients ¢;, d;, and Bounds b are Integers

m Algorithms: e.g. Branch-and-Cut with Simplex

m Pseudo-Boolean Optimization (PBO)
m Variables x; are Boolean, Coefficients c;, d;, and Bound b are Integers

m Algorithms: e.g. CDCL-based

m Maximum Satisfiability (MaxSAT)

m Variables x; are Boolean, Coefficients ¢;, d; € {—1,0,1}, Bound b = —1
m Algorithms: e.g. CDCL-based

MaxSAT: Classic Definition and Terminology

m Input: CNF formula F (set of clauses)
m Task: Find an assignment 7 that maximizes the number of satisfied clauses

Central Generalizations

m Weighted MaxSAT: Each clause C has a weight wg, and the goal is to maximize the total weight of satisfied clauses.
m Partial MaxSAT: Some clauses are hard (infinite weight); soft clauses can be violated.
m Weighted Partial MaxSAT: Mix of hard clauses and weighted soft clauses.

Relationship with Generic Optimization: Each of these variants can be reencoded such that all soft clauses are unit
clauses. Soft unit clauses can then be interpreted as variables in the objective function.

Terminology

m Solution: Assignment satisfying all hard clauses
m Cost: Sum of weights of falsified soft clauses
m Optimal Solution: One that minimizes the cost

MaxSAT Applications

MaxSAT solvers are particularly successful on inherently Boolean problems.

m Placement/Routing/Debugging/Verification in Hardware Design
m Planning, Scheduling, Resource Allocation

m Product Configuration

m Software Package Management

m Causal Discovery, Argumentation, Formal XAl

m Max-Clique

m ...and many more!

Central to success: Advances in MaxSAT solver technology.

Example: Encoding Shortest Paths

m Grid-based shortest path problem from S to G
m Horizontal/vertical moves only; blocked cells not allowed
m Not a practical MaxSAT application, but useful for illustration

n 0 p q
h i J k G
C d e | r

Example: Encoding Shortest Paths

Basic Encoding Idea:

m One Boolean variable per unblocked square
m S, G must be visited (hard unit clauses)

m All other squares: soft unit clauses (e.g., —a)
with weight 1 (“Prefer not to visit”)

MaxSAT minimizes the number of visited squares.

Without further constraints that formulation only visits S and G.

Example: Encoding Shortest Paths

Ensure a valid path between S and G.

Constraint 1: S and G must have exactly one visited neighbor

m For S:

a+b=1

CNF: (av b),(—aV —b)
m For G:

k+qg+r=1

CNF: (kv gV r), (=k V =q), (=k V =r), (=g \V =r)

Constraint 2: All other visited squares must have exactly two visited neighbors

m Example: for square ¢, if eis visited, thend +j+/+f =2

m Requires encoding a cardinality constraint in CNF

Example: Path Properties

Every solution to the hard clauses defines a valid path from S to G.

m Each visited square falsifies a soft clause (e.g., —x)

m MaxSAT solution is a shortest path (minimum number of visited squares)

n p q
h i i k (;
C d e | r

m Orange path: 14 visited
squares

m Green path: 8 visited squares
(optimal)

Representing High-Level Soft Constraints

MaxSAT can represent high-level soft constraints compactly.

Softening an N'P-Constraint

m Let C be a finite-domain soft constraint with weight W,

m Encode C into CNF: CNF(C)=Ci ACo A --- A Cpy
m Introduce fresh variable a, add hard clauses: (C; Vv a) for all i

m Add soft clause: (—a) with weight W,

MaxSAT: Complexity

m Decision version: N'’P-complete

m Given CNF F, integer k: is there an assignment satisfying at least k clauses?

m Optimization version: FP"”-complete

m Solvable with a polynomial number of calls to an AP oracle
m SAT solver acts as the NP oracle in practice

m Same as TSP: polynomial-time computation using an NP oracle

m Hard to approximate: APX-complete

m Constant-factor approximation possible
m No poly-time approximation scheme (PTAS) unless P = N'P

Practical MaxSAT Solving: Input Format, Solvers

Standard Solver Input Format: DIMACS WCNF

m Like DIMACS CNF: Variables indexed from 1 to n, Negation: —i means —x;, Clauses terminated with O

m Header line:
p wecnf <#vars> <#clauses> <top>

m Clause weight is first integer in line; if weight > top — hard clause

Push-Button Solvers / Black-box Solvers

m Input: in standard WCNF format
m Output: provably optimal solution or UNSATISFIABLE

m Internally rely on CDCL SAT solvers to prove unsatisfiability of subsets of clauses

m Examples: Open-source MaxSAT Solvers
m OpenWBO — http://sat.inesc-id.pt/open-wbo/
m MaxHS — http://maxhs.org
m LMHS — http://www.cs.helsinki.fi/group/coreo/lmhs/

http://sat.inesc-id.pt/open-wbo/
http://maxhs.org
http://www.cs.helsinki.fi/group/coreo/lmhs/

Recap.

So far

m MaxSAT is a powerful paradigm for Boolean optimization
m Can be used to model and solve a wide range of real-world problems

m Complexity: FPV7”

-complete
m Standard input format: DIMACS WCNF

m Push-button solvers are widely available and effective

Next up

Algorithms for solving MaxSAT

Algorithms for MaxSAT Solving

m Branch and Bound: MaxSatz, ahmaxsat

m Direct Integer Programming: IP Encoding + IP Solver (e.g., CPLEX, Gurobi)
m lterative, Model-Based: QMaxSAT

m Core-Based: Eva, MSCG, OpenWBO, WPM, maxino

m IP-SAT Hybrids: MaxHS, LMHS

Branch and Bound

Classic method for optimization over search trees

Effective on small, combinatorially hard problems (e.g., Max-Clique),
but scalability issues with thousands of variables

m UB = Maintain upper bound (UB) on current best solution cost
m mincost(n) = minimum cost achievable under node n

m Backtrack if mincost(n) > UB
— no solution under node n can improve the current best solution UB

Basic technique:

m Compute lower bound (LB) such that mincost(n) > LB

m If LB > UB, then backtrack (= mincost(n) > LB > UB)

-\

V3

—|V2

mincost(n)

Branch and Bound: Lower Bounds by Cores

Look for inconsistencies that force some soft clause to be falsified.

m Strategy: find unsatisfiable sets of clauses (UNSAT cores)

m Each core forces at least one clause to be falsified

m Example:
m <= {(x,2),(—x,3)} is unsatisfiable; replace with x' = {(0,2), (—x, 1)}

m {(x,2),(=x,3)} = {(0,2), (=x, 1)}

m Cost of () increased by 2
= 2 is a lower bound

m The cost of each truth assignment is preserved

m Repeat:
1. Detect unsatisfiable core

2. Apply sound transformation to increase cost(()
3. Stop if no further LB improvement possible or LB > UB

MaxSAT by Integer Programming (I1P)

Using IP solvers as MaxSAT engines.

m |P solvers widely used in Operations Research, e.g. IBM CPLEX, Gurobi, SCIP, etc.
m Solve problems with linear constraints and integer variables

m Very effective on many standard optimization problems

But do not dominate native MaxSAT solvers on “very Boolean” problems

MaxSAT Encoding into IP

1. Relax each soft clause C; using a new variable r;
2. Convert each clause to linear constraint:

+x+(1-y)+z+(1 —w)>1

3. Boolean variables become 0-1 bounded integers
4. Objective function:

minz W I

CI'EFS

SAT-Based MaxSAT Solving

The most widely used modern approach.

m Solve a sequence of SAT instances that ask for different values of k:
Is there a truth assignment falsifying at most k soft clauses?

m SAT-based MaxSAT algorithms mainly do two things:

1. Develop better ways to encode this decision problem.

2. Find ways to exploit information obtained from the SAT solver at each stage in the next stage.

Assume unit-weight soft clauses for now ...

Methods for SAT-Based MaxSAT

m Iterative Search: lteratively increase k until SAT
m Core-Based Methods: Use unsatisfiable cores to guide search

m Hybrid Methods: Combine SAT solving with integer programming

Iterative Search

Basic Approach

m To check whether F has a solution of cost < k, solve: (C1 Vi) A+ A(CpV 1) A (X1 1 < k)
m lterate over k = 1,2,... until optimal k is found

lterating over k

m Linear Search: (not efficient)
Start at kK = 1, increment until SAT

m Binary Search: (effective with core-based reasoning)
m Initialize: LB = 0, UB = #soft clauses
m Check k = |49
m |f SAT: UB =k, else LB =k + 1
m Stop when UB = LB + 1, then UB is optimal.

m Linear Search (SAT to UNSAT): (can be effective)

m Find model 7 for hard clauses, let k = #violated soft clauses—1
m Try solving again with lower k until UNSAT

m |f SAT: set k to #violated soft clauses and repeat

m |f UNSAT: last SAT solution is optimal

SAT-Based MaxSAT Solving using UNSAT Cores

Motivation

Adding linear cardinality constraints over all soft clauses is too loose:
m One relaxation variable r; per soft clause, could be well over 100k of variables

m Linear cardinality constraints over all soft clauses are too loose:
no information about which relaxation variables to assign to 1

m SAT solver must explore many subsets of soft clauses

Unsatisfiable Cores in MaxSAT

Core-based approach gives more powerful constraint over which particular soft clauses to relax.
m UNSAT Core: A subset F, C Fgs.t. Fy A F,is UNSAT
m At least one clause in each core must be falsified
m Instead of iteratively ruling out non-optimal solutions, iteratively find and rule out UNSAT cores
m Typically cores are much smaller than full soft clause set

Core-Guided MaxSAT Algorithms: Fu-Malik

m First core-guided MaxSAT algorithm [Fu & Malik, 2006]

m lterative approach:
1. Find an UNSAT core

2. Relax clauses in the core with new variables

3. Add an AtMost-1 constraint over new relaxation vars
m Repeat until the formula becomes SAT

m Each iteration lowers the cost of solutions by 1 (in the unweighted case)

Fu-Malik: Example

m [nitial Formula:
Ci=xsVXxe, GCo=-XVx2, C3=-XVX, Cs=X, Cs = —Xs V Xs,

Ce=XsV—Xg, Cr=x2VXs, Cg=-X4VX5, Cg=Xx7V X5, Cio0="X7V Xz,
Ci1 = X5V X3, C12 = X3

m Core 1: {Cs3, Cy4, C7, Cg, Cy1, Ci2}

m Add relaxation variables ry to rg, and AMO constraint > " r; < 1

m Core 2: {Cy, Cy, C3, Cy4, Cy, C1o, Ci1, Cy2}

m Add relaxation variables r7 to ri4 to these clauses, and AMO constraint Z}j7 ri <1
m Now the instance is SAT, and the optimal cost is the number of iterations (2 here)

m Final Formula:
Ci=XeV XoV I7, Co=-XVXxoVrlg, C3=—XVX{VNhVir, Cis=-X3VrVrry Cs=—-XV Xs

Ce = Xg V —Xa, Cr =XV X3 V I3, Cs = X4 V X5V I, Co=Xx7VXsVnri, Cio=—X7V X5V o
6 14
Ci1="XVX3VrsVrs Cio=-X3VIEVa >, 16H<1, i i <1

Other Core-Guided MaxSAT Algorithms

MSUS3 Algorithm by Marques-Silva and Planes (2007)

Differences to Fu-Malik:

m Introduce only at most one relaxation variable to each soft clause
— Re-use already introduced relaxation variables

m Instead of adding one AtMost-1/Exactly-1 constraint per iteration:
Update the AtMost-k, k noting the k-th iteration

OpenWBO Algorithm by Martins, Joshi, Manquinho, and Lynce, 2014

Combines MSU3 with incremental construction of the cardinality constraint:
— Each new constraint builds on the encoding of the previous constraint

WPM2 Algorithm by Ansotegui, Bonet, and Levy, 2013a

Proposes a method for dealing with overlapping cores: groups intersecting cores into disjoint covers.
The cores might not be disjoint but the covers will be

— at-most-k constraints over the soft clauses in a cover

— at-least-k constraint over the clauses in a core

Implicit Hitting Set Algorithms for MaxSAT

Hitting Sets

Given a collection of sets S of elements, a hitting set H is a subset of elements that intersects all sets S € S.
A hitting set H is optimal if no smaller hitting set exists.

Relationship to MaxSAT: For any optimal hitting set H of the set of UNSAT cores of a formula F,
there is an optimal solutions 7 to F such that 7 satisfies exactly the clauses F \ H.

Key Insight: To find an optimal solution to a MaxSAT instance F, it suffices to:

1. Find an (implicit) hitting set H of the UNSAT cores of F.
— Implicit refers to not necessarily having all MUSes of F.

2. Find a solution to F \ H.

Implicit Hitting Set Algorithms for MaxSAT

Hitting Set Problem as Integer Programming

min » ¢(C)-rc subjectto > rc>1 VKeK
ceyk CeK

m rc = 1 iff clause C is in the hitting set

m Weight function c: works also for weighted MaxSAT

MaxSAT Solving with Implicit Hitting Sets

lterate over the following steps:

m Accumulate a collection I of UNSAT cores (using a SAT solver)

m Find an optimal hitting set H over IC,
and rule out the clauses in H for the next SAT solver call (using an IP solver)

... until the SAT solver returns a satisfying assignment.

Implicit Hitting Set Algorithms for MaxSAT

Optimizations

m a disjoint phase for obtaining several cores before/between hitting set computations
m combinations of greedy and exact hitting sets computations
. ...

Some of these optimizations are integral for making the solvers competitive.

IHS MaxSAT Solvers

For more on some of the details, see
m MaxHS [Davies and Bacchus, 2011 and 2013]
m LMHS [Saikko, Berg, and Jarvisalo, 2016]

IHS Algorithms for MaxSAT are among the best performing solvers today, and work well on a wide range of problems,
particularly on large instances with many different weights on soft clauses.

Recap.

m MaxSAT is a powerful paradigm for Boolean optimization

m Can be used to model and solve a wide range of real-world problems
m Complexity: FPV7

m Standard input format: DIMACS WCNF

m Push-button solvers are widely available and effective

m Several algorithmic approaches to MaxSAT solving

m Core-guided MaxSAT solving is a powerful approach

m Implicit Hitting Set algorithms are among the best performing MaxSAT solvers

